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Introduction

® The early stages of a weakly-coupled QGP after a heavy-ion collision
constitutes a non-hydrodynamic system, far from thermal equilibrium.

® Yet, there is mounting evidence that even at this early stage the

evolution of the plasma is governed by only a handful of degrees of
freedom.

—> “Hydrodynamization”
® However, these “slow” degrees of freedom elicit some questions:
O |s there systematic way to identify them at all times?

o |n what sense can we extend hydrodynamics to earlier times?
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The path to hydrodynamics in the “Bottom-up”

thermalization scenario
[1] Baier, Mueller, Schiff and Son, PLB (2001)

In the BMSS scenario,

. Over-occupied hard gluors

>> 1 at very early times | < Q T <K a‘3/ >

2. Hard gluons become under- occupledf < 1 when a‘3’2 < Qr < a>?

3. Thermalization of the soft sector aft,f/2 < Q01

We will be working inside this regime
—> Well before hydrodynamics & thermalization



Motivation

Observation of prescaling in far-from-

equilibrium QCD kinetic theory

® Prescaling: time-dependent
scaling

JpL,p,7) = 7% (Tﬁ(f)p L7 z>
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Observation of prescaling/in far-from-

Motivation f

equilibrium QCD kinetic theory

® Prescaling: time-dependent
scaling

Universal diribution
function of the scaling
regime [3]

In [2], the setup of the simulation featured
1<70=17,0, < g =10’

1 <7000 =170 < g =10,

consistent with the first stage of the bottom-up scenario [1].

Time-dependent
scaling exponents —1.5
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——f(p,7) = C[f(p)]
T 0p,

([2] A. Mazeliauskas, J. Berges (2019))
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Universal scaling exponents, BMSS scenario [1]



Motivation

Observation of prescaling in far-from-
equilibrium QCD kinetic theory 15

® Prescaling: time-dependent
scaling

fpL,p,7) = Ta(f)fS(Tﬂ(T)pJ_, 242 z)

® |[n this phase, three “slow”
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([2] A. Mazeliauskas, J. Berges (2019))
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a, B,y govern the evolution. —1 F :
o) — 0.1

® How do these exponents —1.5 ¢ . -
0.01 0.1 1

emerge? Are they actually
degrees of freedom?



Adiabatic Hydrodynamization
—> Plenary talk by Jasmine Brewer [4], Friday 17:45
® | ook at the kinetic equation as a Hamiltonian system:

0¥ = — Xly; (FIW V.

—> Each eigenstate y of # constitutes an effective degree of freedom.
(v =EV)

—> If the rate of change of # is smaller than the gap between its
eigenvalues, then the lowest energy eigenstates should dominate the
“slow” evolution of the system.

—> These modes should describe the “slow” properties of the plasma.

® Since a, f,y are “slow” quantities, is it possible to understand prescaling
from this point of view?
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Summary of results

(what we will discuss today)

® \We show that at early times the time-dependent scaling
exponents are determined by the evolution of only one slowly
varying parameter.

® \Ve establish the nature of the slow modes in kinetic theory at
early times in the small-angle scattering approximation from
the adiabatic hydrodynamization perspective.



Early-time prescaling



Solution scheme

® At early times, we can use the small-angle scattering approximation,
and that the typical gluon momenta satisfy p, < p, = p. It follows that

momentum diffusion 0 P 0 . )02f ) V2 /.
constant [5] 3 - op, ~ qly op?2 ~ 4\y) VpJ;
L — over-occupied distribution
where § = 4ﬂNc20‘szlch 1+~ 47rN62aslebJ I f>1
P P

® To solve this, we will treat § as a time-dependent parameter and look
for time-dependent scaling solutions (p!"p!) = D, ,,A(7)B(z)"C(z)".

— a=altr;q,0.q;fyl, P =Pplr;q,0.q9;/), v =7rlr:q,0.4;f]

® The only approximation we make is that ologg/ologt is varying slowly.
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Results

Note that (pre)scaling implies

ol
that —=2 — 24 —245—+.

dlogt

—> Then, replacing the
expressions

a = alt;q,0.4]
p = plr;q,04]
y =7l7;q,0.4]

one gets a 1st order ODE for 4.

Solving it, ¢ fully determines
a, f,7.

exponents
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Results

Note that (pre)scaling implies

ol
that —=2 — 24 —245—+.

dlogt

—> Then, replacing the
expressions

a = alt;q,0.4]
p = plr;q,04]
y =7l7;q,0.4]

one gets a 1st order ODE for 4.

Solving it, ¢ fully determines
a, f,7.

Compare with [2]:
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The adiabatic perspective: scaling

Why is this time-dependent scaling solution preferred?

—> Kinetic equation as a Hamiltonian system: o,y = — Z[y; {F;[w ]} 1.

—> Lowest energy eigenstate (for simplicity @[ /] « al%Zf) IS given by

I 2n)! [ 7q !
h//O>(_><pZ2 pJ_>O< T 7 , £y = 1.

—> This state exhibits time-dependent scaling. It follows that

1 dlogg 3 1 10dlogg dlog g
__2oed 2 20284 s and —2d —oq—2p—7.
2 dlogr 2 2 2 0logr dlogt

o =

—> Putting these together, a = -2/3, y=1/3, p=0.
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The adiabatic perspective: prescaling

Eigenvalues of #: E, = 2n + 1 = Energy gap.

—> After a sufficiently long time the state will be governed by the
lowest modes.

—> initial condition : |y) = Ay |yy) + A |yy)-
—> Solving for the scaling exponents (perturbatively in A,/A,) gives

] 0log & A, (1,/7)? 0log
(1_|_ qu) 1 (7;/7) (3+ gq

_I_ I
dlogt Ay 41q dlogt

2
), =0, a=y—1.
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The adiabatic perspective: prescaling

Eigenvalues of #: E, = 2n + 1 = Energy gap.

—> After a sufficiently long time the state will be governed by the
lowest modes.

—> 1initial condition : |y) = Ay|yy) + A, |y;)-

—> Solvmg for the scaling exponents (perturbatlvely in A,/A,) gives

A7 dloa A G s Iloe o W2
y ={— — 1 + gq 3 (e ) 3+ gq ﬂ =0, a= Y — 1.
ologz./” Ao qgg \ ologz A~

- “1st order” correction
—> Prescallng

d 4

“Oth order” BMSS ) | N dlog g T
exponent Perturbative parameter 1. Now we solve the ODE a log T = 20 — 2ﬂ 14 ;

g amg-




Adiabatic prescallng

® Prescaling emerges as the
lowest excited states
decay.

® Appears before reaching
the time-independent
scaling regime, for any
initial condition.

® [For specific choices of
initial conditions (which
requires f, ~ f), prescaling
can be extended to
arbitrarily early times.

— Y(T)
m—— (((T)
1.5 - : —_— B(T)
| —-= v(T), |@o)
\ —- (1), |yo)
1.0 - \ - = Y(T), |Wo) + |@1)
== a(T), |wo) + |y1)
0.5 ~ l ~~_
[ ¢ e ¢ o e ¢ i ¢ ¢ ¢ o 8 T — T
\
\
0.0
—0.5 - ~~_
b = o — — — — — ] — — — — — — —  — — — y—aa——a a2 2 oo |
_1.0 | | | | | | |
0.1 0.5
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Summary

® Scaling and prescaling at early
times after a heavy-ion collision
can be explained by following
the instantaneous eigenstates of
lowest energy in the kinetic
equation.

—>The use of such states can
greatly simplity the analysis of
the QGP, even at very early
times.

® This analysis extends that of [4]
to an earlier stage in the QGP
hydrodynamization.
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Outlook

® To do: follow the evolution of a
“lowest energy” eigenstate from
early times until hydrodynamics.

—> Also: study other setups
with the adiabatic framework.

® How to probe different scaling
regimes: exponent-independent
ratios of moments.

—> |In particular: cumulants that
vanish for specific forms of
scaling distributions f..
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Extra slides



How to write the kinetic equation as in the
adiabatic theorem of quantum mechanics

Consider a collision integral of the form

BLf1=— ), W@)(0f),

where /. are numbers that may depend non-linearly on f, and 6; are linear
differential operators acting on f.

Then, by taking moments (e.g. N, ,, = J pgnpff) one arrives at
p

alogfcnnm_ (2n+ 1)nnm 2/11 nmnmnn m”

which is of the form ayw’ =—-X|v;:{F:[v]}y.
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Explicit form of the Hamiltonians

o If €[f1=-qV;f, we have (in the n,,, = (p>"p]") basis)

Orog Ny = — (21 + Dy, + 74(2) [2n(2n — Dn,_y,, + mznn,m_zl ,
which means that

A o= 02n+1)0

n.mn’.m’ n,n’ mm —1.n’ mm

— 7G|(2n)(2n - 1)8, L S

e If we only keep the longitudinal momentum derivatives, €[f] = - 49, f,

=—2n+ n,,, +7g(r)2n(2n — 1)n

al()g Tnn,m — n—1,m’

A o= 02n+1)0

n,mn’.m’

—7q(2n)(2n — 1)o,

n,n’ mm —1.,n’ mm
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Scaling around the late-time attractor:

® Recently, Almalool, Kurkela, Strickland (2020) showed that an aHydro
ansatz

\/ p” + EX(7)p?

f(pa T) — fBose A(T) )

fixing & A such that the energy-momentum tensor matches that of a full
kinetic theory simulation.

—> This is also a time-dependent scaling distribution. How do we
understand this?
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Relaxation Time Approximation (RTA)
(near Hydro)

® As an illustrative example, consider the RTA approximation to the kinetic
equation:

0~ 220, = ~——(r-fa)

TR(7)

® After the transients have died out, most of the moments behave as

 T(2n+m+3)
n,,, T ,

where T is determined by the energy density of the system.
0.1
— a =0, ﬂzyz—LT.

® This is also a time-dependent scaling regime, but the shape of the
distribution function is different.
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A way to distinguish the two regimes:
a “phase transition” of the distribution function

® (Time-dependent) Scaling greatly simplifies the dynamics of a system. However,

—> a, f,y do not give information on the shape of the distribution function.

—> Moreover, for scaling to take place, that shape must remain fixed, and it must
be independent of a, 4, 7.

® One can use this fact to find quantities independent of «a, 5,y that remain
constant.

—> For instance, under (time-dependent) scaling, the ratio
2 2\2

(p2r1)
(p#) (pi)

— If this ratio changes, then scaling must be broken, signaling a “phase
transition” out of that regime. One can use it as an order parameter to
distinguish different “phases.” -

IS constant.




Explicit solutions to the scaling exponents’ ODE

Motivated by [2], if the shape of the initial distribution is Gaussian, with
(pzz) = azz and (pi) = ai, we find (y = log(t/7)), ¢ = 14, g, = — 0,9/q)

ge**(1 —g,/2)

=1 —
T ey — g+ X1 — g, 12)
P q8,/2
qo — q + 018,(0)/2
2y
ge-(1 —g,/2) qg
o = — 1 1 =Y — I + 2ﬁ

q62y —qo T+ 622(1 o gq/z) do— g+ sz_gq(())/z
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Scaling exponents for Compare with [2]:

higher initial occupancy Blf] o Vi f
1.5 7
® |n [2], it was also considered ;‘Eﬁi
an initial occupancy 6 times Lo 7(7)
higher.

® Prescaling starts later than in 1/4
the case considered in the |
main section.

—> The comparison to our
results starts later.
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