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Introduction
•The early stages of a weakly-coupled QGP after a heavy-ion collision 

constitutes a non-hydrodynamic system, far from thermal equilibrium.

•Yet, there is mounting evidence that even at this early stage the 
evolution of the plasma is governed by only a handful of degrees of 
freedom.

—> “Hydrodynamization”

•However, these “slow” degrees of freedom elicit some questions: 

Is there systematic way to identify them at all times?

In what sense can we extend hydrodynamics to earlier times?
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The path to hydrodynamics in the “Bottom-up” 
thermalization scenario
[1] Baier, Mueller, Schiff and Son, PLB (2001)

In the BMSS scenario,

1. Over-occupied hard gluons  at very early times 

2. Hard gluons become under-occupied , when 

3. Thermalization of the soft sector after 

fg ≫ 1 1 ≪ Qsτ ≪ α−3/2
s

fg ≪ 1 α−3/2
s ≪ Qsτ ≪ α−5/2

s

α−5/2
s ≪ Qsτ
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We will be working inside this regime
—> Well before hydrodynamics & thermalization



•Prescaling: time-dependent 
scaling

• In this phase, three “slow” 
apparent degrees of freedom, 

, govern the evolution.

•How do these exponents 
emerge?

f(p⊥, pz, τ) = τα(τ)fS(τβ(τ)p⊥, τγ(τ)pz)

α, β, γ

Motivation
([2] A. Mazeliauskas, J. Berges (2019))
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Observation of prescaling in far-from-
equilibrium QCD kinetic theory
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scaling

• In this phase, three “slow” 
apparent degrees of freedom, 

, govern the evolution.

•How do these exponents 
emerge?

f(p⊥, pz, τ) = τα(τ)fS(τβ(τ)p⊥, τγ(τ)pz)

α, β, γ

Motivation

4

Universal distribution 
function of the scaling 

regime [3] Time-dependent 
scaling exponents

Universal scaling exponents, BMSS scenario [1]

Observation of prescaling in far-from-
equilibrium QCD kinetic theory

−
∂
∂τ

f(p, τ) +
pz

τ
∂

∂pz
f(p, τ) = 𝒞[ f(p)]

In [2], the setup of the simulation featured





consistent with the first stage of the bottom-up scenario [1].

1 < 70 = τ0Qs ≪ g−3 = 109

1 ≪ 7000 = τrefQs ≪ g−3 = 109,



([2] A. Mazeliauskas, J. Berges (2019))
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•Prescaling: time-dependent 
scaling

• In this phase, three “slow” 
apparent degrees of freedom, 

 govern the evolution.

•How do these exponents 
emerge? Are they actually 
degrees of freedom?

f(p⊥, pz, τ) = τα(τ)fS(τβ(τ)p⊥, τγ(τ)pz)

α, β, γ

Motivation
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Observation of prescaling in far-from-
equilibrium QCD kinetic theory



 Adiabatic Hydrodynamization
•Look at the kinetic equation as a Hamiltonian system:

.

—> Each eigenstate  of  constitutes an effective degree of freedom. 
( )

—> If the rate of change of  is smaller than the gap between its 
eigenvalues, then the lowest energy eigenstates should dominate the 
“slow” evolution of the system.

—> These modes should describe the “slow” properties of the plasma.

•Since  are “slow” quantities, is it possible to understand prescaling 
from this point of view?

∂y ⃗ψ = − ℋ[y; {Fi [ ⃗ψ ]}] ⃗ψ

⃗ψ ℋ
ℋ ⃗ψ = E ⃗ψ

ℋ

α, β, γ
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—> Plenary talk by Jasmine Brewer [4], Friday 17:45



Summary of results
(what we will discuss today)

•We show that at early times the time-dependent scaling 
exponents are determined by the evolution of only one slowly 
varying parameter.

•We establish the nature of the slow modes in kinetic theory at 
early times in the small-angle scattering approximation from 
the adiabatic hydrodynamization perspective.

•We show how different time-dependent scaling regimes can be 
probed by looking at moments of the distribution function.

7



Early-time prescaling
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Solution scheme
•At early times, we can use the small-angle scattering approximation, 

and that the typical gluon momenta satisfy . It follows that

,

where  .

•To solve this, we will treat  as a time-dependent parameter and look 
for time-dependent scaling solutions . 

.

•The only approximation we make is that  is varying slowly.

pz ≪ p⊥ ≈ p

∂
∂τ

f −
pz

τ
∂

∂pz
≈ ̂q(y)

∂2f
∂p2

z
≈ ̂q(y)∇2

p f

̂q = 4πN2
c α2

s lCb ∫p
(1 + f )f ≈ 4πN2

c α2
s lCb ∫p

f2

̂q
⟨pm

⊥ pn
z ⟩ = Dn,mA(τ)B(τ)mC(τ)n

⟹ α = α[τ; ̂q, ∂τ ̂q; f0], β = β[τ; ̂q, ∂τ ̂q; f0], γ = γ[τ; ̂q, ∂τ ̂q; f0]

∂ log ̂q/∂ log τ

over-occupied distribution 
f ≫ 1

momentum diffusion 
constant [5]
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Results

1/3

Note that (pre)scaling implies 
that .

—> Then, replacing the 
expressions 

one gets a 1st order ODE for .

Solving it,  fully determines 
.

∂ log ̂q
∂ log τ

= 2α − 2β − γ

α = α[τ; ̂q, ∂τ ̂q]
β = β[τ; ̂q, ∂τ ̂q]
γ = γ[τ; ̂q, ∂τ ̂q]

̂q

̂q
α, β, γ /τref
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Results
Compare with [2]:
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Results
Compare with [2]:
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𝒞[ f ] ∝ ∇2

p f

Note that (pre)scaling implies 
that .

—> Then, replacing the 
expressions 

one gets a 1st order ODE for .

Solving it,  fully determines 
.

∂ log ̂q
∂ log τ

= 2α − 2β − γ

α = α[τ; ̂q, ∂τ ̂q]
β = β[τ; ̂q, ∂τ ̂q]
γ = γ[τ; ̂q, ∂τ ̂q]

̂q

̂q
α, β, γ



Results
Compare with [2]:
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𝒞[ f ] ∝ ∂2

pz
f

Note that (pre)scaling implies 
that .

—> Then, replacing the 
expressions 

one gets a 1st order ODE for .

Solving it,  fully determines 
.

∂ log ̂q
∂ log τ

= 2α − 2β − γ

α = α[τ; ̂q, ∂τ ̂q]
β = β[τ; ̂q, ∂τ ̂q]
γ = γ[τ; ̂q, ∂τ ̂q]

̂q

̂q
α, β, γ



The adiabatic perspective: scaling
Why is this time-dependent scaling solution preferred? 

—> Kinetic equation as a Hamiltonian system: .

—> Lowest energy eigenstate (for simplicity ) is given by

, .

—> This state exhibits time-dependent scaling. It follows that 

.   

—> Putting these together, 

∂y ⃗ψ = − ℋ[y; {Fi [ ⃗ψ ]}] ⃗ψ

𝒞[ f ] ∝ ∂2
pz

f

|ψ0⟩ ⟷ ⟨p2n
z pm

⊥ ⟩ ∝
(2n)!

n! ( τ ̂q
2 )

n

E0 = 1

α = −
1
2

∂ log ̂q
∂ log τ

−
3
2

, γ = −
1
2

−
1
2

∂ log ̂q
∂ log τ

, β = 0, and
∂ log ̂q
∂ log τ

= 2α − 2β − γ

α = − 2/3, γ = 1/3, β = 0.
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The adiabatic perspective: prescaling
Eigenvalues of :   Energy gap.

—> After a sufficiently long time the state will be governed by the 
lowest modes.

.

—> Solving for the scaling exponents (perturbatively in ) gives

.

ℋ En = 2n + 1 ⟹

⟹ initial condition : |ψ⟩ = A0 |ψ0⟩ + A1 |ψ1⟩

A1/A0

γ = −
1
2 (1 +

∂ log ̂q
∂ log τ ) +

A1

A0

(τI /τ)2

4τ ̂q (3 +
∂ log ̂q
∂ log τ )

2

, β = 0, α = γ − 1
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The adiabatic perspective: prescaling
Eigenvalues of :   Energy gap.

—> After a sufficiently long time the state will be governed by the 
lowest modes.

.

—> Solving for the scaling exponents (perturbatively in ) gives

.

ℋ En = 2n + 1 ⟹

⟹ initial condition : |ψ⟩ = A0 |ψ0⟩ + A1 |ψ1⟩

A1/A0

γ = −
1
2 (1 +

∂ log ̂q
∂ log τ ) +

A1

A0

(τI /τ)2

4τ ̂q (3 +
∂ log ̂q
∂ log τ )

2

, β = 0, α = γ − 1

“0th order” BMSS 
exponent “Perturbative parameter”

“1st order” correction

—> Prescaling

Now we solve the ODE 
∂ log ̂q
∂ log τ

= 2α − 2β − γ
15



•Prescaling emerges as the 
lowest excited states 
decay.

•Appears before reaching 
the time-independent 
scaling regime, for any 
initial condition. 

• For specific choices of 
initial conditions which 
requires , prescaling 
can be extended to 
arbitrarily early times.

(
f0 ∼ fS)

Adiabatic prescaling  dominate|ψ0⟩, |ψ1⟩

 dominates|ψ0⟩/τref16



• Scaling and prescaling at early 
times after a heavy-ion collision 
can be explained by following 
the instantaneous eigenstates of 
lowest energy in the kinetic 
equation.

—>The use of such states can 
greatly simplify the analysis of 
the QGP, even at very early 
times.

• This analysis extends that of [4] 
to an earlier stage in the QGP 
hydrodynamization.

Summary Outlook
• To do: follow the evolution of a 

“lowest energy” eigenstate from 
early times until hydrodynamics.

—> Also: study other setups 
with the adiabatic framework.

• How to probe different scaling 
regimes: exponent-independent 
ratios of moments. 

—> In particular: cumulants that 
vanish for specific forms of 
scaling distributions .fS
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Thanks!
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Extra slides
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How to write the kinetic equation as in the 
adiabatic theorem of quantum mechanics
Consider a collision integral of the form

,

where  are numbers that may depend non-linearly on , and  are linear 
differential operators acting on .

Then, by taking moments , one arrives at

,

which is of the form .

𝒞[ f ] = − ∑
i

λi(τ; f )(𝒪i f)

λi f 𝒪i
f

(e . g . nn,m = ∫p
p2n

z pm
⊥ f)

∂log τnn,m = − (2n + 1)nn,m − ∑
i

λiM
𝒪i
n,m;n′�,m′�nn′�,m′�

∂y ⃗ψ = − ℋ[y; {Fi [ ⃗ψ ]}] ⃗ψ
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Explicit form of the Hamiltonians
• If , we have (in the  basis)

,

which means that

.

• If we only keep the longitudinal momentum derivatives, ,

,

.

𝒞[ f ] = − ̂q∇2
p f nn,m = ⟨p2n

z pm
⊥ ⟩

∂log τnn,m = − (2n + 1)nn,m + τ ̂q(τ)[2n(2n − 1)nn−1,m + m2nn,m−2]

ℋn,m;n′�,m′� = (2n + 1)δn,n′� δm,m′� − τ ̂q[(2n)(2n − 1)δn−1,n′� δm,m′ � + m2δn,n′� δm−1,m′�]
𝒞[ f ] = − ̂q∂2

pz
f

∂log τnn,m = − (2n + 1)nn,m + τ ̂q(τ)2n(2n − 1)nn−1,m

ℋn,m;n′�,m′� = (2n + 1)δn,n′� δm,m′� − τ ̂q(2n)(2n − 1)δn−1,n′� δm,m′ �
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Scaling around the late-time attractor:
•Recently, Almalool, Kurkela, Strickland (2020) showed that an aHydro 

ansatz

,

fixing  such that the energy-momentum tensor matches that of a full 
kinetic theory simulation.

—> This is also a time-dependent scaling distribution. How do we 
understand this?

f(p; τ) = fBose

p2 + ξ2(τ)p2
z

Λ(τ)

ξ, Λ
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Relaxation Time Approximation (RTA)
(near Hydro)

•As an illustrative example, consider the RTA approximation to the kinetic 
equation:                                                                        
aaaaaaaaaaaaaaaaaaa .

• After the transients have died out, most of the moments behave as 
adddmmmmmmmmmmmmm ,                                   
where  is determined by the energy density of the system.

. 

• This is also a time-dependent scaling regime, but the shape of the 
distribution function is different.

∂τ f −
pz

τ
∂pz

f = −
1

τR(τ) (f − feq)

nn,m ∼ T(2n+m+3)

T

⟹ α = 0, β = γ = −
∂yT

T
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A way to distinguish the two regimes: 
a “phase transition” of the distribution function
•(Time-dependent) Scaling greatly simplifies the dynamics of a system. However,

—>  do not give information on the shape of the distribution function.

—> Moreover, for scaling to take place, that shape must remain fixed, and it must 
be independent of . 

•One can use this fact to find quantities independent of  that remain 
constant.

—> For instance, under (time-dependent) scaling, the ratio                   

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa     is constant.                                                                                  

 If this ratio changes, then scaling must be broken, signaling a “phase 
transition” out of that regime. One can use it as an order parameter to 
distinguish different “phases.”

α, β, γ

α, β, γ

α, β, γ

⟨p2
z p2

⊥⟩2

⟨p4
z ⟩ ⟨p4

⊥⟩
⟹
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Explicit solutions to the scaling exponents’ ODE
Motivated by [2], if the shape of the initial distribution is Gaussian, with 

 and , we find ⟨p2
z ⟩ = σ2

z ⟨p2
⊥⟩ = σ2

⊥ (y ≡ log(τ/τI), q ≡ τ ̂q, gq ≡ − ∂yq/q)

γ = 1 −
qe2y(1 − gq/2)

qe2y − q0 + σ2
z (1 − gq/2)

β = −
qgq/2

q0 − q + σ2
⊥gq(0)/2

α = −
qe2y(1 − gq/2)

qe2y − q0 + σ2
z (1 − gq/2)

−
qgq

q0 − q + σ2
⊥gq(0)/2

= γ − 1 + 2β
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• In [2], it was also considered 
an initial occupancy 6 times 
higher.

• Prescaling starts later than in 
the case considered in the 
main section.

—> The comparison to our 
results starts later.

Scaling exponents for 
higher initial occupancy






α(τ)
β(τ)
γ(τ)
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𝒞[ f ] ∝ ∇2
p f

Compare with [2]:


