## Dynamical initialization of hydrodynamics for heavy-ion collisions at Beam Energy Scan energies

#### Lipei Du

Department of Physics, The Ohio State University, USA

with D. Everett and U. Heinz

Initial Stages 2021

January 13, 2021



The VI® International Conference on the INITIAL STAGES OF HIGH-ENERGY NUCLEAR COLLISIONS



A D > A D >

Lipei Du (OSU)

Dynamical initialization at BES energies

Initial Stages 2021 (Jan. 13, 2021) 0 / 15

# Motivation

#### Illustration of heavy-ion collisions



#### credit: Chun Shen

Э



<sup>2007</sup> NSAC Long Range Plan

Theoretical modeling of heavy-ion collisions at low energies:

- complicated interpenetration dynamics;
- dynamics of conserved charges;
- singularity associated with the QCD critical point in the thermal properties of the medium;
- large fluctuations and strong correlations near the critical point;

Θ..

# **Dynamical initialization**



Collision geometry and overlap time of Au-Au collision [C. Shen and B. Schenke, 1710.00881, Du et al. 1807.04721].

э

• • • • • • • • • • •



Collision geometry and overlap time of Au-Au collision [C. Shen and B. Schenke, 1710.00881, Du et al. 1807.04721].

A D > < 
 A P >
 A



Collision geometry and overlap time of Au-Au collision [C. Shen and B. Schenke, 1710.00881, Du et al. 1807.04721].

- At low collision energies (e.g. Beam Energy Scan energies), the space-time history of nuclear interpenetration is complicated;
- Hybrid descriptions of heavy-ion collision involving hydrodynamics require (3+1)D initial conditions in these cases;



Collision geometry and overlap time of Au-Au collision [C. Shen and B. Schenke, 1710.00881, Du et al. 1807.04721].

- At low collision energies (e.g. Beam Energy Scan energies), the space-time history of nuclear interpenetration is complicated;
- Hybrid descriptions of heavy-ion collision involving hydrodynamics require (3+1)D initial conditions in these cases;
- Two main ingredients needed:
  - energy deposition and charge doping in space-time, e.g., hadron-string transport approaches;
  - criterion of switching to hydrodynamics from point to point (hydrodynamization/fluidization);

## Construction of (3+1)D initial conditions

• Some dynamical initialization models for hydrodynamics at low beam energies

| References                      | Dynamics                         | Smearing kernel                                    | Hydro           |
|---------------------------------|----------------------------------|----------------------------------------------------|-----------------|
| Shen et al.,                    | MC-Glauber + string              | Gaussian with $\sigma_{\perp}$ and $\sigma_{\eta}$ | (3+1)D MUSIC    |
| Du et al.,                      | Modified UrQMD                   | Lorentz invariant kernel                           | (3+1)D BEShydro |
| Naboka et al.,                  | Relaxation model of $T^{\mu\nu}$ | Gaussian with $R_x$ and $R_y$                      | (2+1)D vHLLE    |
| Akamatsu et al.,                | JAM                              | Lorentz invariant kernel                           | HLLE algorithm  |
| Okai et al., & Kanakubo et al., | PYTHIA                           | Gaussian with $\sigma_{\perp}$ and $\sigma_{\eta}$ | Y. Tachibana    |

Э

• Some dynamical initialization models for hydrodynamics at low beam energies

| References                      | Dynamics                         | Smearing kernel                                    | Hydro           |
|---------------------------------|----------------------------------|----------------------------------------------------|-----------------|
| Shen et al.,                    | MC-Glauber + string              | Gaussian with $\sigma_{\perp}$ and $\sigma_{\eta}$ | (3+1)D MUSIC    |
| Du et al.,                      | Modified UrQMD                   | Lorentz invariant kernel                           | (3+1)D BESнудго |
| Naboka et al.,                  | Relaxation model of $T^{\mu\nu}$ | Gaussian with $R_x$ and $R_y$                      | (2+1)D vHLLE    |
| Akamatsu et al.,                | JAM                              | Lorentz invariant kernel                           | HLLE algorithm  |
| Okai et al., & Kanakubo et al., | PYTHIA                           | Gaussian with $\sigma_{\perp}$ and $\sigma_{\eta}$ | Y. Tachibana    |

 Comparison between initial conditions based on transport model (modified-UrQMD) [L. Du et al., 1807.04721] and dynamical string model [C. Shen and B. Schenke, 1710.00881] (see also Chun Shen's talk, Wed. 19:25, Session CD)



## Violation of boost-invariance

• At BES energies, initial energy deposition and baryon doping in modified-UrQMD are not boost-invariant:



Space-time rapidity and rapidity distributions of produced particles.

- Initial distribution evolves towards boost-invariance by longitudinal free-streaming;
- This evolution is faster at higher collision energies.

#### Violation of boost-invariance



Space-time rapidity and rapidity distributions of baryons, anti-baryons and net baryons [L. Du et al., 1807.04721] (note:  $\tau_{\rm form}$  is the thermalization time).

- The initial space-time distribution have large uncertainties (within our model from the value of the thermalization time).
- Similar rapidity distributions can correspond to very different space-time rapidity distributions, and different space-time rapidity distributions may lead to different hydrodynamic evolution.

## **Dynamical sources: formalism**

• Hydrodynamics with dynamical sources ( $d_{\mu}$  being covariant derivative):

$$\begin{split} &d_{\mu} \, T^{\mu\nu}_{\rm fluid}(x) &= \quad \mathcal{J}^{\nu}_{\rm source}(x) \equiv -d_{\mu} \, T^{\mu\nu}_{\rm p}(x) \;, \\ &d_{\mu} N^{\mu}_{\rm fluid}(x) &= \quad \rho_{\rm source}(x) \equiv -d_{\mu} N^{\mu}_{\rm p}(x) \;. \end{split}$$

Э

## **Dynamical sources: formalism**

• Hydrodynamics with dynamical sources ( $d_{\mu}$  being covariant derivative):

$$\begin{split} d_{\mu} \, T^{\mu\nu}_{\text{fluid}}(x) &= \quad \mathcal{J}^{\nu}_{\text{source}}(x) \equiv -d_{\mu} \, T^{\mu\nu}_{\text{p}}(x) \;, \\ d_{\mu} N^{\mu}_{\text{fluid}}(x) &= \quad \rho_{\text{source}}(x) \equiv -d_{\mu} N^{\mu}_{\text{p}}(x) \;. \end{split}$$

• Energy-momentum tensor and baryon current of the particles are given by [D. Oliinychenko and H. Petersen, Phys.Rev. C93 (2016) 034905]

$$T_{\rm p}^{\mu\nu}(t, \mathbf{r}) = \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{0}} K(\mathbf{r} - \mathbf{r}_{i}(t), p_{i}) \Phi(t - t_{\rm th, i}) ,$$
  

$$N_{\rm p}^{\mu}(t, \mathbf{r}) = \sum_{i} b_{i} \frac{p_{i}^{\mu}}{p_{i}^{0}} K(\mathbf{r} - \mathbf{r}_{i}(t), p_{i}) \Phi(t - t_{\rm th, i}) .$$

## **Dynamical sources: formalism**

• Hydrodynamics with dynamical sources ( $d_{\mu}$  being covariant derivative):

$$\begin{split} &d\mu \, T^{\mu\nu}_{\rm fluid}(x) &= \quad \mathcal{J}^{\nu}_{\rm source}(x) \equiv -d\mu \, T^{\mu\nu}_{\rm p}(x) \;, \\ &d\mu N^{\mu}_{\rm fluid}(x) &= \quad \rho_{\rm source}(x) \equiv -d\mu N^{\mu}_{\rm p}(x) \;. \end{split}$$

• Energy-momentum tensor and baryon current of the particles are given by [D. Oliinychenko and H. Petersen, Phys.Rev. C93 (2016) 034905]

$$T_{\rm p}^{\mu\nu}(t, \mathbf{r}) = \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{0}} K(\mathbf{r} - \mathbf{r}_{i}(t), p_{i}) \Phi(t - t_{\rm th,i}) ,$$
  
$$N_{\rm p}^{\mu}(t, \mathbf{r}) = \sum_{i} b_{i} \frac{p_{i}^{\mu}}{p_{i}^{0}} K(\mathbf{r} - \mathbf{r}_{i}(t), p_{i}) \Phi(t - t_{\rm th,i}) .$$

• The spatial smearing kernel in the particles' rest frame and lab frame is given by

$$K_i(t_{
m rf}, {m x}_{
m rf}, {m p}_i) = rac{1}{(2\pi\sigma^2)^{3/2}} {
m exp}\left[rac{-({m x}_{
m rf} - {m r}_{
m rf,i})^2}{2\sigma^2}
ight],$$

$$K_i(\mathbf{x}) = \frac{\gamma_i}{(2\pi\sigma^2)^{3/2}} \exp\left[-\frac{\Delta \mathbf{r}^2 + (\Delta \mathbf{r} \cdot \mathbf{u}_i)^2}{2\sigma^2}
ight],$$

where  $\Delta \mathbf{r} = \mathbf{r} - \mathbf{r}_i(t_{\text{th},i}), \mathbf{u}_i = \gamma_i \boldsymbol{\beta}_i$ .

• The sources and tensors are constructed in Cartesian coordinates and then mapped to Milne coordinates:

$$t( au,\eta_s)= au\cosh\eta_s\ ,\quad z( au,\eta_s)= au\sinh\eta_s\ .$$

= nar

• The sources and tensors are constructed in Cartesian coordinates and then mapped to Milne coordinates:

$$t( au,\eta_s)= au\cosh\eta_s\ ,\quad z( au,\eta_s)= au\sinh\eta_s\ .$$

• 3D initial condition from AMPT model [L. Pang, Q. Wang and X.-N. Wang, 1205.5019]

$$T^{\mu\nu}(\tau_0, x, y, \eta_s) = K \sum_i \frac{p_i^{\mu} p_i^{\nu}}{p_i^{\tau}} \frac{1}{\tau_0 \sqrt{2\pi\sigma_{\eta_s}^2}} \frac{1}{2\pi\sigma_r^2} \exp\left[-\frac{(x - x_i)^2 + (y - y_i)^2}{2\sigma_r^2} - \frac{(\eta_s - \eta_{is})^2}{2\sigma_{\eta_s}^2}\right],$$

3

A D F A B F A B F A B F

• The sources and tensors are constructed in Cartesian coordinates and then mapped to Milne coordinates:

$$t( au,\eta_s)= au\cosh\eta_s \;, \quad z( au,\eta_s)= au\sinh\eta_s \;.$$

• 3D initial condition from AMPT model [L. Pang, Q. Wang and X.-N. Wang, 1205.5019]

$$T^{\mu
u}( au_0, x, y, \eta_s) = K \sum_i rac{p_i^{\mu} p_i^{
u}}{p_i^{ au}} rac{1}{ au_0 \sqrt{2\pi\sigma_{\eta_s}^2}} rac{1}{2\pi\sigma_r^2} \exp{\left[-rac{(x-x_i)^2 + (y-y_i)^2}{2\sigma_r^2} - rac{(\eta_s - \eta_{is})^2}{2\sigma_{\eta_s}^2}
ight]},$$

• Dynamical string model [C. Shen and B. Schenke, 1710.00881]

$$f_{ ext{smear}}(x^lpha;x^lpha_i) = rac{\delta( au- au_i)}{ au} f_\perp(x,y;x_i,y_i) f_{\eta_s}(\eta_s;\eta_{s,i}).$$

with Gaussian smearing profiles in the transverse and longitudinal directions,

$$egin{aligned} f_{\perp}(x,y;x_i,y_i) &= rac{1}{\pi\sigma_{\perp}^2}\exp\left[-rac{(x-x_i)^2-(y-y_i)^2}{\sigma_{\perp}^2}
ight],\ f_{\eta_s}(\eta_s;\eta_{s,i}) &= rac{1}{\sqrt{\pi}\sigma_{\eta_s}}\exp\left[-rac{(\eta_s-\eta_{s,i})^2}{\sigma_{\eta_s}^2}
ight]. \end{aligned}$$

イロト イポト イヨト イヨト

• Mapping a Gaussian smearing kernel w.r.t (t, z) and  $(\tau, \eta_s)$  in different coordinate systems



• Mapping a Gaussian smearing kernel w.r.t (t, z) and  $(\tau, \eta_s)$  in different coordinate systems





Map of a Gaussian kernel between Cartesian and Milne coordinates

• Mapping a Gaussian smearing kernel w.r.t (t, z) and  $(\tau, \eta_s)$  in different coordinate systems





Map of a Gaussian kernel between Cartesian and Milne coordinates (at  $\eta_s=$  0 and 1.)

• Mapping a Gaussian smearing kernel w.r.t (t, z) and  $(\tau, \eta_s)$  in different coordinate systems





Map of a Gaussian kernel between Cartesian and Milne coordinates (at  $\eta_s=$  0 and 1.)

• For construction of (3+1)D initial conditions at low beam energies, more attention should be paid on the smearing kernel.

## Dynamical sources: Lorentz contraction and time dilation

 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 \\ 0 & 1 \\ 0 & -2 \\ 0 & 2 \\ 0 & -2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 &$ 

AuAu @ 200 GeV b=0 fm

#### Dynamical sources: Lorentz contraction and time dilation

 $T_{\rm p}^{\tau\tau}$  (fm<sup>-4</sup>) at  $\eta_s = 0$ 



 $T^{\tau\,\tau}$  of the particles at mid-rapidity (Au-Au 200 GeV, b=5.0--5.5 fm).

## Dynamical sources: Lorentz contraction and time dilation

 $T_{\rm p}^{\tau\tau}$  (fm<sup>-4</sup>) at  $\eta_s = 0$ 



 $T^{\tau\tau}$  of the particles at mid-rapidity (Au-Au 200 GeV, b = 5.0-5.5 fm).

- Assuming the same free-streaming time in particles' rest frame, particles with higher velocity will propagate to larger τ and η<sub>s</sub>;
- with larger Lorentz contraction, these particles introduce larger anisotropy at later times and at larger space-time rapidity.

## Gaussian width of the smearing kernel

• Evolution in initial conditions and effects from different smearing width (at  $\eta_s = 1.5$ )



Evolution of the averaged temperature (left) and transverse momentum anisotropy (right) at  $\eta_s = 1.5$  with  $\tau_{th} = 0.2$  fm/c and Gaussian smearing width  $\sigma = 0.5$  and 1.0 fm in Cartesian coordinates (Au-Au 200 GeV, b = 5.0-5.5 fm).

• Averaged temperature and transverse momentum anisotropy

$$\langle T \rangle = \frac{\int dx dy \ e(x, y) T(x, y)}{\int dx dy \ e(x, y)} , \quad \langle \epsilon_p \rangle = \sqrt{\frac{\langle T^{xx} - T^{yy} \rangle^2 + \langle 2T^{xy} \rangle^2}{\langle T^{xx} + T^{yy} \rangle^2}}$$

## **Different smearing kernels**

• Evolution in initial conditions with different smearing kernel (at  $\eta_s = 1.5$ )



Comparison of transverse momentum anisotropy at  $\eta_s = 1.5$  with a smearing kernel in Cartesian (left) and Milne (right) coordinates.

• Smearing kernel with Lorentz contraction in Cartesian coordinates results in larger anisotropy and more fluctuations.

A D > < 
 A P >
 A

#### Perspectives on transport coefficients extraction

• To extract transport properties (such as charge diffusion constants) of fireballs created at low beam energies, we need a well-constrained (3+1)D initial condition [C. Shen, G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, 1704.04109; C. Shen and B. Schenke, 1710.00881; G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, and C. Shen, 1804.10557; L. Du, U. Heinz, G. Vujanovic, 1807.04721].



(left) initial baryon stopping; (right) hydrodynamic transport.

## Perspectives on transport coefficients extraction

• To extract transport properties (such as charge diffusion constants) of fireballs created at low beam energies, we need a well-constrained (3+1)D initial condition [C. Shen, G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, 1704.04109; C. Shen and B. Schenke, 1710.00881; G. Denicol, C. Gale, S. Jeon, A. Monnai, B. Schenke, and C. Shen, 1804.10557; L. Du, U. Heinz, G. Vujanovic, 1807.04721].



(left) initial baryon stopping; (right) hydrodynamic transport.

- To disentangle effects from initial baryon stopping and hydrodynamic transport;
- It's useful to have both distributions in space-time rapidity and rapidity in the initial stage, since initial conditions are mostly in space-time rapidity whereas observables are in (pseudo-)rapidity.

• Different smearing kernels may result in different event plane decorrelation and extraction of  $\eta/s(\mu, T)$  at low beam energies.

Э

#### Perspectives on transport coefficients extraction

- Different smearing kernels may result in different event plane decorrelation and extraction of  $\eta/s(\mu, T)$  at low beam energies.
- Using rapidity differential anisotropic flow to constrain the temperature dependence of η/s(T) [G. Denicol, A. Monnai, and B. Schenke, 1512.01538].



Note that within the current model, one expects larger isotropy at large space-time rapidity.





- At low beam energies, dynamical initialization of hydrodynamics with (3+1)-dimensional initial conditions becomes important.
- With violation of boost-invariance at low beam energies, different smearing kernels will be of phenomenological relevance: extraction of viscosity, event plane decorrelation, etc.
- More attention should be paid on possible effects from smearing kernels.

イロト イポト イヨト イヨト

Thank you very much!