

Rapidity evolution of collision geometry at high energy - an improved TRENTo initial condition model^1

Weiyao Ke

In collaboration with Derek Soeder, Steffen Bass, and Jean-Francois Paquet

¹This work is supported by the UCB-CCNU Collaboration Grant, NSF ACI-1550228 and ACI-1550225 under JETSCAPE, DOE DE-FG02-05ER41367.

Toward a 3D geometric initial condition model for nuclear collisions

From boost-invariant to a 3+1D evolution of quark-gluon plasma:

- Achieve a more precise characterization of dynamical quantities.
- Necessary for the study of small collision systems.
- Improve model-data-comparison in the presence of η -gap. First step: knowledge of three-dimensional initial condition.

A parametric approach to the "initial condition" problem

Current boost-invariant TRENTo model²: "Transverse local": $e(\mathbf{x}) = e(T_A(\mathbf{x}), T_B(\mathbf{x}))$ T_A, T_B : participant density.

²JS Moreland, JE Bernhard, SA Bass PRC 92, 011901 (2015)

A parametric approach to the "initial condition" problem

Current boost-invariant TRENTo model²: "Transverse local": $e(\mathbf{x}) = e(T_A(\mathbf{x}), T_B(\mathbf{x}))$ T_A, T_B : participant density.

 $\Delta au \ll$ Transverse length scales

TRENTo:
$$e(\mathbf{x}) \propto \left[\frac{T_A(\mathbf{x})^p + T_B(\mathbf{x})^p}{2}\right]^{1/p}$$
, $p \in R$

²JS Moreland, JE Bernhard, SA Bass PRC 92, 011901 (2015)

A parametric approach to the "initial condition" problem

Current boost-invariant TRENTo model²: "Transverse local": $e(\mathbf{x}) = e(T_A(\mathbf{x}), T_B(\mathbf{x}))$ T_A, T_B : participant density.

 $\Delta au \ll$ Transverse length scales TRENTo: $e(\mathbf{x}) \propto \left[\frac{T_A(\mathbf{x})^p + T_B(\mathbf{x})^p}{2}\right]^{1/p}$, $p \in R$

²JS Moreland, JE Bernhard, SA Bass PRC 92, 011901 (2015)

Longitudinal direction:

Earlier extension of TRENTo to 3D, WK, JS Moreland, JE Bernhard, SA Bass, PRC 96, 044912 (2017).

★ This study: new parametrization with insights from scaling of energy/particle production with \sqrt{s} , T_A , T_B in different η regions.

▲ 国 ▶ | ▲ 国 ▶

Scaling of energy production near midrapidity (central fireball)

• Strong evidence from calibrated to data at RHIC and LHC that $p\approx 0~{\rm that}^3$

$$e(\mathbf{x},\eta_s=0)\propto\left[rac{T_A(\mathbf{x})^p+T_B(\mathbf{x})^p}{2}
ight]^{rac{1}{p}}
ightarrow N\sqrt{s}^lpha\sqrt{T_AT_B}$$

• Extend to finite but small rapidity:

$$e(\mathbf{x}, |\eta_s| \ll y_b) = e(\mathbf{x}, 0)e^{-\frac{(\eta_s - \eta_{c.m.})^2}{2y_b}}$$
$$\langle \eta_{c.m.}(\mathbf{x}) \rangle = \frac{1}{2} \ln \frac{T_A(\mathbf{x})}{T_B(\mathbf{x})}$$

motivated by Landau hydro picture of particle production⁴. Width of the distribution $\sim \sqrt{y_b}$.

³JE Bernhard et al PRC 94 024907 and Nat. Phys. 15. 1113–1117. JETSCAPE 2011.01430. $\sqrt{T_A T_B}$ scaling also corroborated by the pQCD+saturation EKRT model PRC 93 024907, or motivated by energy-momentum conservation, C Shen and S Alzhrani PRC 102 014909.

⁴LD Landau, Izv. Akad. Nauk Ser. Fiz. 17 (1953) 51; P Steinberg, Acta Phys.Hung. A24 (2004) 51-57 💿 👘 💿 🔿 <<

Weiyao Ke (UCB/LBL)

Scaling of particle production when $y \rightarrow y_{\text{beam}}$

Limiting fragmentation assumption⁵: $dN_{ch}/d\eta/N_{part,target} \approx f(\eta - y_b)$

⁵J Benecke, TT Chou, CN. Yang, E Yen Phys. Rev. 188 (1969) 2159. PHOBOS PRL 91 (2003) 052303.

4 12 16 14 12 16

Scaling of particle production when $y \rightarrow y_{\mathrm{beam}}$

Limiting fragmentation assumption⁵: $dN_{ch}/d\eta/N_{part,target} \approx f(\eta - y_b)$

• dN/dy = xf(x) of the broken target motivated by parton distribution function⁶.

⁵J Benecke, TT Chou, CN. Yang, E Yen Phys. Rev. 188 (1969) 2159. PHOBOS PRL 91 (2003) 052303.

 $^{6}\mathsf{J}$ Jalilian-Marian, PRC 70, 027902; SA Bass, B Müller, DK Srivastava PRL 91 052302

Weizmann Institute of Science JAN-13-2021 5 / 10

Scaling of particle production when $y \rightarrow y_{\mathrm{beam}}$

Limiting fragmentation assumption⁵: $dN_{ch}/d\eta/N_{part,target} \approx f(\eta - y_b)$

- dN/dy = xf(x) of the broken target motivated by parton distribution function⁶.
- Assume energy deposition $y \approx y_b$ scales as

$$\frac{d e_{\mathrm{F/B}}}{d \eta} \sim C_{\mathrm{F/B}} [T_{\mathcal{A}}(\mathbf{x}) f(y_{\mathrm{b}} - \eta) + T_{\mathcal{B}}(\mathbf{x}) f(y_{\mathrm{b}} + \eta)]$$

Interpolate to midrapidty $(N\sqrt{s^{\alpha}}\sqrt{T_{A}T_{B}}g(\eta - \eta_{cm}))$, subject to local energy-momentum conservation.

⁵J Benecke, TT Chou, CN. Yang, E Yen Phys. Rev. 188 (1969) 2159. PHOBOS PRL 91 (2003) 052303.

⁶J Jalilian-Marian, PRC 70, 027902; SA Bass, B Müller, DK Srivastava PRL 91 052302

Impact on rapidity-dependent geometric properties

- Geometric properties will evolve from fragmentation region (T_A , T_B) to central region ($\sqrt{T_A T_B}$).
- Central fireball becomes increasingly important at high \sqrt{s} .

Typical T_A , T_B for p-A collisions

 $T_A = 0.3 \text{ fm}^{-2}$, $T_B = 3.0 \text{ fm}^{-2}$

Impact on rapidity-dependent geometric properties

- Geometric properties will evolve from fragmentation region (T_A , T_B) to central region ($\sqrt{T_A T_B}$).
- Central fireball becomes increasingly important at high \sqrt{s} .

Tune to transverse energy density

- Transverse energy at mid-rapidity over large range of \sqrt{s} , collision systems, and centralities.
- Pseudorapidity density of transverse energy for p-Pb (5.02 TeV), Pb-Pb (2.76 TeV).
- Not fine-tuned. A systematic calibration of parameters is underway!

³He-Au PRC 93 024901

(Space-time)-rapidity evolution of the event geometry

Rapidity evolution of the eccentricity:

$$\epsilon_n(\eta_s)e^{in\Phi_n(\eta_s)} = \frac{\int dx_{\perp}^2 r^n e^{in\phi} e(x_{\perp}, \eta_s)}{\int dx_{\perp}^2 r^n e(x_{\perp}, \eta_s)}$$

- $\langle \epsilon_n \rangle (\eta_s) \sim {\rm const.}$ in AA collisions.
- In p-A collisions, ε_n interpolates proton-shape fluctuation, central fireball, and nuclear participant fluctuation.

Weiyao Ke (UCB/LBL)

Weizmann Institute of Science JAN-13-2021 8 / 10

Longitudinal factorization ratio of participant planes

- Approximate Ψ_n with Φ_n of ϵ_n .
- Agreement for mid-central collisions. TRENTo results in too much decorrelation in 0-5% collisions.

Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52 (2016) 97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber,

P Bozek, W Broniowski, PLB 752 (2016) 206-211

Pb-Pb 2.76 TeV, CMS, PRC 92 034911

⁷Pb-Pb 2.76 TeV, CMS, PRC 92 034911. Pb-Pb 5.02 TeV, ATLAS, EPJC 78 142; Au-Au 200 & 27 GeV, STAR Preliminary QM18 (NPA 982 403-406),QM19(2005.03252)

Weiyao Ke (UCB/LBL)

Initial Stages 2021, online

Longitudinal factorization ratio of participant planes

$$Q_{n}(\eta) = \underbrace{\sum_{i \in \eta} e^{in\phi_{i}}}_{q_{n}(\eta)} \bigoplus_{i \in \eta} \underbrace{Q_{n}(\eta) Q_{n}^{*}(\eta_{\mathrm{ref}})}_{0} \xrightarrow{\eta_{\mathrm{ref}}}_{0} \underbrace{Q_{n}(\eta) Q_{n}^{*}(\eta_{\mathrm{ref}})}_{0} \approx \frac{\langle \cos(n[\Psi_{n}(-\eta) - \Psi_{n}(\eta_{\mathrm{ref}})]) \rangle}{\langle \cos(n[\Psi_{n}(\eta) - \Psi_{n}(\eta_{\mathrm{ref}})]) \rangle}$$

- Approximate Ψ_n with Φ_n of ϵ_n .
- Agreement for mid-central collisions. TRENTo results in too much decorrelation in 0-5% collisions.

Other studies: AMPT+hydro, LG Pang et al Eur.Phys.J.A 52

(2016) 97; 3D-Glasma, B Schenke, S Schlichting; Torque Glauber,

P Bozek, W Broniowski, PLB 752 (2016) 206-211

• \sqrt{s} -dependent r_n in 10-40%⁷, to be improved with dynamical evolution.

⁷Pb-Pb 2.76 TeV, CMS, PRC 92 034911. Pb-Pb 5.02 TeV, ATLAS, EPJC 78 142; Au-Au 200 & 27 GeV, STAR Preliminary QM18 (NPA 982 403-406),QM19(2005.03252)

Summary

- TRENTo-3D: parametric 3D initial geometric model for nuclear collisions.
- Improvements: incorporate different beam-energy and participant density scaling for
 - Central region ($\eta \sim \eta_{c.m.}$): $e \sim \sqrt{s}^{\alpha} \sqrt{T_A T_B}$
 - Limiting fragmentation region $(|\eta| \sim y_b)$: $e \sim T_{A,B}$.

lead to systematic \sqrt{s} & $\eta\text{-dependent}$ participant plane decorrelations.

- Systematic description of $E_T \& N_{ch}$ for different $\sqrt{s} \otimes$ collision systems \otimes centralities. Ongoing works:
 - Systemic tuning parameters, comparing initial-condition level "observables" to data.
 - Facilitate large-scale 3+1D dynamical simulation in the future (JETSCAPE).

同 ト イヨ ト イヨ ト ヨ シ ク Q ()

Back-up: pseudorapidity density of charged particle multiplicity

- TRENTo initial condition yields initial energy distribution, not directly comparable to charged particle multiplicity.
- Apply the relation $\langle N_{ch} \rangle \sim 1.5 \langle E_T \rangle / \sqrt{s}^{0.05}$ motivated by fitting the measured E_T v.s. N_{ch} at middle rapidity.

Back-up: (space-time)-rapidity evolution of the event geometry

Rapidity evolution of the eccentricity: $\epsilon_n(\eta_s)e^{in\Phi_n(\eta_s)} = \frac{\int dx_{\perp}^2 r^n e^{in\phi} e(x_{\perp},\eta_s)}{\int dx_{\perp}^2 r^n e(x_{\perp},\eta_s)}$.

- $\langle \epsilon_n \rangle (\eta_s) \sim {\rm const.}$ in AA collisions.
- In p-A collisions, ϵ_n interpolates proton-shape fluctuation, central fireball, and nuclear participant fluctuation.

Back-up: (space-time)-rapidity evolution of the event geometry

Rapidity evolution of the eccentricity: $\epsilon_n(\eta_s)e^{in\Phi_n(\eta_s)} = \frac{\int dx_{\perp}^2 r^n e^{in\phi} e(x_{\perp},\eta_s)}{\int dx_{\perp}^2 r^n e(x_{\perp},\eta_s)}$.

Participant-plane decorrelation $\langle \cos[n(\Phi_n(\eta_s) - \Phi_n(\eta'_s))] \rangle$

- High energy: central fireball dominates, slowly-evolving participant-plane orientation.
- Low energy: limiting-fragmentation becomes important, faster-evolving participant-plane orientation.

x [fm]