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Two particle correlations

Motivation: Ridge structure

• correlations between particles over large intervals
of rapidity peaking at zero and π relative azimuthal
angle.

• observed first at RHIC in Au-Au collisions.

• observed at LHC for high multiplicity pp and pA
collisions.

[ATLAS Collaboration - arXiv:1609.06213]
The ridge:

 3

● Two-particle correlations in 
pp and pPb at the LHC show 
features that in AA are 
attributed to final state 
interactions describable by 
viscous relativistic 
hydrodynamics and interpreted 
as a signal of equilibration.
● EKT and AdS/CFT: hydro 
works even for large 
momentum anisotropies.
● What about a non-hydro 
initial-state explanation? 
(anyway long range rapidity 
correlations must come from 
the very early times…).

1609.06213

N. Armesto, 18.04.2018 - Multi gluon correlations in the CGC: 1. Introduction.
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Correlations within the CGC framework

Ridge in HICs ↔ collective flow due to strong final state interactions

(good description of the data in the framework of relativistic viscous hydrodynamics)

Ridge in small size systems: similar reasoning looks tenuous but hydro describes the data very well.

Can it be initial state effect?

idea: final state particles carry the imprint of the partonic correlations that exist in the initial state.

Most frequently used mechanism to explain the ridge correlations in the CGC framework:

Glasma graph approach to two gluon production:

[Dumitru, Gelis, McLerran, Venugopalan - arXiv:0804.3858]
[Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan - arXiv:1009.5295]

Correlations within the CGC - II
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Glasma graph calculation contains two physical e↵ects:

Bose enhancement of the gluons in the projectile wave function.
T.A., N. Armesto, G. Beuf, A. Kovner, M. Lublinsky, Phys.Lett. B751 (2015) 448-452

� /
h
�(2)(k1 � q1 � k2 + q2) + �(2)(k1 � q1 + k2 � q2)

i

Hanbury-Brown-Twiss (HBT) correlations between gluons far separated in rapidity.

� /
h
�(2)(k1 � k2) + �(2)(k1 + k2)

i

kT -factorized approach
Y. V. Kovchegov, D. E. Wertepny, Nucl. Phys. A 906 (2013) 50
Y. V. Kovchegov, D. E. Wertepny, Nucl. Phys. A 925 (2014) 254
Glasma graph approach:
T.A., N. Armesto, G. Beuf, A. Kovner, M. Lublinsky, Phys.Lett. B752 (2016) 113-121

Glasma graph approach dilute-dense collisions: kT -factorized approach
T.A., N. Armesto, D. E. Wertepny, arXiv:1804.02910 [hep-ph]
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? Glasma graph calculation contains two physical effects:

Bose enhancement of the gluons in projectile/target wave function

[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1503.07126]

σ|BE ,P ∝
{
δ(2)
[
(k1−q1)− (k2−q2)

]
+ δ(2)

[
(k1−q1) + (k2−q2)

]}

σ|BE ,T ∝
{
δ(2)
(
q1 − q2

)
+ δ(2)

(
q1 + q2

)}

Hanbury-Brown-Twiss (HBT) correlations of produced gluons.

σ|HBT ∝
{
δ(2)(k1 − k2) + δ(2)(k1 + k2)

}

[Kovchegov,Wertepny - arXiv:1212.1195 / arXiv:1310.6701]
[TA, Armesto, Beuf, Kovner, Lublinsky - arXiv:1509.03223]
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Going beyond the glasma approach in pA collisions

Two particle correlations beyond the glasma graph approach: 2 gluon production in pA collisions

[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739]
Double Inclusive spectrum:

dN(2)

d2k1d2k2
∝
∫

zi z̄i

e ik1·(z1−z̄1)+ik2·(z2−z̄2)

∫

xiyi

Ai (x1 − z1)Ai (z̄1 − y1)Aj(x2 − z2)Aj(z̄2 − y2)

×
〈
ρa1(x1)ρa2(x2)ρb1(y1)ρb2(y2)

〉
P

×
〈[

U(z1)− U(x1)
]a1c[U†(z̄1)− U†(y1)

]cb1
[
U(z2)− U(x2)

]a2d[U†(z̄2)− U†(y2)
]db2

〉
T

Ai is the standard WW field.

Projectile averaging: 〈ρa1ρa2ρb1ρb2〉 = 〈ρa1ρb1〉〈ρa2ρb2〉+ 〈ρa1ρa2〉〈ρb1ρb2〉+ 〈ρa1ρb2〉〈ρa2ρb1〉
with 〈ρa(x)ρb(y)〉 = δabµ2(x , y)

Target averaging → dipole and quadrupole operators:

Target Averaging in double inclusive production

Using these physical assumptions

hQ(x , y , z , v)iT ! d(x , y)d(z , v) + d(x , v)d(z , y) +
1

N2
c � 1

d(x , z)d(y , v)

hD(x , y)D(z , v)iT ! d(x , y)d(z , v) +
1

(N2
c � 1)2

[d(x , v)d(y , z) + d(x , z)d(v , y)]

should be plugged in the double inclusive gluon production cross section

d�

d2k1d⌘1d2k2d⌘2
= ↵2

s (4⇡)2
Z

z1z̄1z2z̄2

e ik1·(z1�z̄1)+ik2·(z2�z̄2)

Z

x1x2y1y2

Ai (x1 � z1)A
i (z̄1 � y1)A

j(x2 � z2)A
j(z̄2 � y2)

⇥
(

µ2(x1, x2) µ2(y1, y2)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤⇥

U(z̄2) � U(y2)
⇤⇥

U†(z2) � U†(x2)
⇤o�

T

+µ2(x1, y1) µ2(x2, y2)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤o

tr
n⇥

U(z2) � U(x2)
⇤⇥

U†(z̄2) � U†(y2)
⇤o�

T

+µ2(x1, y2) µ2(x2, y1)

⌧
tr
n⇥

U(z1) � U(x1)
⇤⇥

U†(z̄1) � U†(y1)
⇤⇥

U(z2) � U(x2)
⇤⇥

U†(z̄2) � U†(y2)
⇤o�

T

)
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Integration over the coordinates
with ⇒
translationally invariant dipoles

dN(2)

d2k1d2k2
=

dN(2)

d2k1d2k2

∣∣∣∣
dd

+
dN(2)

d2k1d2k2

∣∣∣∣
Q

↙ ↘
uncorrelated correlated
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Going beyond the glasma approach in pA collisions - II

Correlated part of the 2-gluon spectrum: dN(2)

d2k1d2k2

∣∣∣∣
Q

∝
∫

q1q2

d(q1)d(q2)
[
IQ,1 + IQ,2

]

where

IQ,1 = µ2(k1 − q1, q2 − k2)µ2(k2 − q2, q1 − k1) Li (k1, q1)Li (k1, q1) Lj(k2, q2)Lj(k2, q2) + (k2 → −k2)

IQ,2 = µ2(k1 − q1, q1 − k2)µ2(k2 − q2, q2 − k1) Li (k1, q1)Li (k1, q2) Lj(k2, q1)Lj(k2, q2) + (k2 → −k2)

with Li (k , q) =
[

(k−q)i

(k−q)2 − k i

k2

]
is the Lipatov vertex.

Generalization to the 3-gluon spectrum:

dN(3)

d2k1d2k2d2k3
=

dN(3)

d2k1d2k2d2k3

∣∣∣∣
ddd

+
dN(3)

d2k1d2k2d2k3

∣∣∣∣
dQ

+
dN(3)

d2k1d2k2d2k3

∣∣∣∣
X

ddd - term: all three gluons are uncorrelated.
dQ - term: one gluon is uncorrelated from the other two.
X -term: all three gluons are correlated.

dN(3)

d2k1d2k2d2k3

∣∣∣∣
X

∝
∫

q1q2q3

d(q1)d(q2)d(q3)
[
IX ,1 + IX ,2 + IX ,3 + IX ,4 + IX ,5

]

Each IX ,α contribution: 8 different terms with 3-µ2 functions and 6 Lipatov vertices.
Total of 40 different terms!
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v2 and correlations

[TA, Armesto, Kovner, Lublinsky, Skokov - arXiv:2012.01810]

Can we compute the correlation of v2 with total multiplicity?

ON,v2 =

∫
dφ2dφ3 e i2(φ2−φ3)

∫
d2k1

dN(3)

d2k1d2k2d2k3

∣∣
X∫

dφ2dφ3 e i2(φ2−φ3) dN(2)

d2k2d2k3

∣∣
Q

∫
d2k1

dN(1)

d2k1

Disclaimer:

MV model: µ2(k , q) = (2π)2 µ2 δ(2)(k + q) & GBW model: d(q) = 4π
Q2

s
e−q

2/Q2
s

assume k2
2 ∼ k2

3 � Q2
s and neglect the terms that exponentially suppressed.

assume large Nc .

Total multiplicity:

dN(1)

d2k1
∝
∫

q1

d(q1) µ2(k1 − q1, q1 − k1) Li (k1, q1)Li (k1, q1)

Integration over q1:

dN(1)

d2k1
= αs(4π)(N2

c − 1)µ2 S⊥e
−k2

1/Q
2
s

{
2

k2
1

− 1

k2
1

ek
2
1/Q

2
s +

1

Q2
s

[
Ei

(
k2

1

Q2
s

)
− Ei

(
k2

1λ

Q2
s

)]}

S⊥ ≡ transverse area of the projectile & λ ∼ 1/(S⊥Q2
s ) IR cutoff

In pA: Qs ∼ 1 GeV and S⊥ ∼ 1/Λ2
QCD → λ ∼ 1/(S⊥Q2

s ) ∼ 1/25 is used in the numerical
computations.
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v2 and correlations

2-gluon spectrum and v2: upon integration over q2 and q3, two types of terms arise:

Bose enhancement type:

8

The mean transverse momentum k̄2 is formally defined as the average of k2
1 with the weight Eq. (36). From the

expression in Eq. (36),

k2
1

dN (1)

d2k1
= ↵s (4⇡) (N2

c � 1) µ2 S? e�k2
1/Q2

s

⇢
2 � ek2

1/Q2
s +

k2
1

Q2
s


Ei

✓
k2
1

Q2
s

◆
� Ei

✓
k2
1 �

Q2
s

◆��
. (39)

The integral over k1 diverges logarithmically in the UV

k2
1

dN (1)

d2k1
' ↵s (4⇡) (N2

c � 1) µ2S?
Q2

s

k2
1


1 +

2 Q2
s

k2
1

�
. (40)

Being divergent, the average momentum defined this way is not a very useful quantity. Instead, whenever we need a
quantity that represents a typical momentum of produced particles we will use

k̄2 ! Q2
s . (41)

The second flow coe�cient is evaluated using our expressions for the double inclusive gluon spectrum introduced
in (24).

dN (2)

d2k2 d2k3

����
Q

= Q1 + Q2 , (42)

where in the large Nc limit and in the approximation of translationally invariant projectile (see Appendix A)

Q1 = ↵2
s (4⇡)2 (N2

c � 1) µ4 S?
1

⇡Q2
s

e�(k2�k3)
2/2Q2

s

⇢
1

2
+

22 Q2
s

(k2 + k3)2
+

24 Q4
s

(k2 + k3)4

�
1

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)4
(43)

+ Q4
s

26

(k2 + k3)8


1 + (ki

2 � ki
3)

✓
ki
2

k2
2

� ki
3

k2
3

◆��
+ (k3 ! �k3),

Q2 = ↵2
s (4⇡)2 (N2

c � 1) µ4 S? (2⇡)2
h
�(2)(k2 + k3) + �(2)(k2 � k3)

i 1

2

Q4
s

k8
2

. (44)

These expressions have been obtained assuming large values of transverse momenta k2
2,3 � Q2

s.
The momentum dependent second flow coe�cient is defined as

v2
2(k2, k3) =

R
d�2d�3e

i2(�2��3) d2N(2)

d2k2d2k3R
d�2d�3

d2N(2)

d2k2d2k3

. (45)

One usually also averages the numerator and the denominator in Eq. (45) separately over momentum bins of finite
width.

The only contribution to the numerator in Eq. (45) comes from the correlated term Eq. (24) since the uncorrelated
term vanishes upon angular integration. The denominator, on the other hand, is dominated by the uncorrelated piece
which at large Nc is given by Eq. (23).

Although the general expressions for the two gluon inclusive spectrum have been known for a while [23, 24], we are
not aware of the actual calculation of v2 in this simple dense-dilute approach. Here we evaluate Eq.(45) numerically,
and present the results in the next section.

B. v2 vs total multiplicity

We now turn to our observables of interest. We first aim to study correlations between v2 and multiplicity. The
standard measure of correlation between two observables X and Y is the Pearson coe�cient R

R(X, Y ) =
h(X � hXi)(Y � hY i)ip

hX2 � hXi2i
p
hY 2 � hY i2i

(46)

which measures the strength of the correlation between X and Y relative to their autocorrelations. This type of
observable was studied recently in [31] in order to flesh out the e↵ects of initial state momentum anisotropies.

HBT type:

8

The mean transverse momentum k̄2 is formally defined as the average of k2
1 with the weight Eq. (36). From the

expression in Eq. (36),

k2
1

dN (1)

d2k1
= ↵s (4⇡) (N2

c � 1) µ2 S? e�k2
1/Q2

s

⇢
2 � ek2

1/Q2
s +

k2
1

Q2
s


Ei

✓
k2
1

Q2
s

◆
� Ei

✓
k2
1 �

Q2
s

◆��
. (39)

The integral over k1 diverges logarithmically in the UV

k2
1

dN (1)

d2k1
' ↵s (4⇡) (N2

c � 1) µ2S?
Q2

s

k2
1


1 +

2 Q2
s

k2
1

�
. (40)

Being divergent, the average momentum defined this way is not a very useful quantity. Instead, whenever we need a
quantity that represents a typical momentum of produced particles we will use

k̄2 ! Q2
s . (41)

The second flow coe�cient is evaluated using our expressions for the double inclusive gluon spectrum introduced
in (24).

dN (2)

d2k2 d2k3

����
Q

= Q1 + Q2 , (42)

where in the large Nc limit and in the approximation of translationally invariant projectile (see Appendix A)

Q1 = ↵2
s (4⇡)2 (N2

c � 1) µ4 S?
1

⇡Q2
s

e�(k2�k3)
2/2Q2

s

⇢
1

2
+

22 Q2
s

(k2 + k3)2
+

24 Q4
s

(k2 + k3)4

�
1

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)4
(43)

+ Q4
s

26

(k2 + k3)8


1 + (ki

2 � ki
3)

✓
ki
2

k2
2

� ki
3

k2
3

◆��
+ (k3 ! �k3),

Q2 = ↵2
s (4⇡)2 (N2

c � 1) µ4 S? (2⇡)2
h
�(2)(k2 + k3) + �(2)(k2 � k3)

i 1

2

Q4
s

k8
2

. (44)

These expressions have been obtained assuming large values of transverse momenta k2
2,3 � Q2

s.
The momentum dependent second flow coe�cient is defined as

v2
2(k2, k3) =

R
d�2d�3e

i2(�2��3) d2N(2)

d2k2d2k3R
d�2d�3

d2N(2)

d2k2d2k3

. (45)

One usually also averages the numerator and the denominator in Eq. (45) separately over momentum bins of finite
width.

The only contribution to the numerator in Eq. (45) comes from the correlated term Eq. (24) since the uncorrelated
term vanishes upon angular integration. The denominator, on the other hand, is dominated by the uncorrelated piece
which at large Nc is given by Eq. (23).

Although the general expressions for the two gluon inclusive spectrum have been known for a while [23, 24], we are
not aware of the actual calculation of v2 in this simple dense-dilute approach. Here we evaluate Eq.(45) numerically,
and present the results in the next section.

B. v2 vs total multiplicity

We now turn to our observables of interest. We first aim to study correlations between v2 and multiplicity. The
standard measure of correlation between two observables X and Y is the Pearson coe�cient R

R(X, Y ) =
h(X � hXi)(Y � hY i)ip

hX2 � hXi2i
p
hY 2 � hY i2i

(46)

which measures the strength of the correlation between X and Y relative to their autocorrelations. This type of
observable was studied recently in [31] in order to flesh out the e↵ects of initial state momentum anisotropies.

When calculating the ON,v2 these two terms are ready to be plugged in
∫
dφ2dφ3 e i2(φ2−φ3) dN(2)

d2k2d2k3

∣∣
Q

BUT let us first compute

11

X̄1(k2 = k3) = ↵3
s(4⇡)6(N2

c � 1) µ6 S?
1

8

Q4
s

k10
2

⇥ 2. (59)

• X̄3:

X̄3 =
1

2
↵3

s(4⇡)6(N2
c � 1) µ6 S? e�(k2�k3)

2/2Q2
s

1

k2
3

⇥
⇢8
>>:1

2
+ Q2

s


1

k2
3

+
22

(k2 + k3)2

�
+ Q4

s


3

k4
3

+
2!

k2
3

22

(k2 + k3)2
+

24

(k2 + k3)4

�9
>>; 1

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)4

+ Q4
s

26

(k2 + k3)8


1 + (ki

2 � ki
3)

✓
ki
2

k2
2

� ki
3

k2
3

◆��
+ (k2 ! �k2), (60)

X̄3(k2 = k3) = ↵3
s(4⇡)6(N2

c � 1) µ6 S?
1

8

Q4
s

k10
3

⇥ 2. (61)

• X̄4:

X̄4 = ↵3
s(4⇡)6(N2

c � 1) µ6 S? e�(k2�k3)
2/2Q2

s

⇢
1 +

9

2

22 Q2
s

(k2 + k3)2
+ 15

24 Q4
s

(k2 + k3)4

�
2

k2
2 k2

3

(k2 � k3)
4

(k2 + k3)6

+
24 Q4

s

(k2 + k3)4
22

(k2 + k3)2


3

2

24

(k2 + k3)4
� 5

4

1

k2
2 k2

3

��
+ (k3 ! �k3), (62)

X̄4(k2 = k3) = ↵3
s(4⇡)6(N2

c � 1) µ6 S?
1

4

Q4
s

k10
2

⇥ 2. (63)

• X̄2:

X̄2 = ↵3
s(4⇡)6(N2

c � 1) µ6 (2⇡) S?
⇥
�(2)(k2 + k3) + �(2)(k2 � k3)

⇤ 1

4

Q6
s

k10
2

. (64)

• X̄5:

X̄5 ⇡ ↵3
s(4⇡)6(N2

c � 1) µ6 (2⇡) S?
h
�(2)(k2 + k3) + �(2)(k2 � k3)

i 1

8

Q6
s

k10
2

. (65)

In the next section we present the results of the numerical evaluation.

IV. NUMERICAL RESULTS

We now turn to numerical evaluation of the correlators discussed above. Here we mainly present the results, keeping
their discussion for the next Section.

Note that in all the figures we plot momentum in units of Qs and the quantities of interest multiplied by the factor
(N2

c � 1)S?Q2
s in order to exhibit the universal features of the result applicable to any target (any value of Qs) and

projectile (any value of S?). The ratios we calculate also do not depend on the projectile scale µ2. To extract a
number relevant for p-Pb or p-Au scattering one should take the realistic value (N2

c � 1)S?Q2
s ⇠ 200.

For the normalization in Eqs. (47) and (56), the value of the cuto↵ � has to be specified in the integration Eq. (36).
While � = 1/25 was selected, we have checked that varying � in reasonable limits does not appreciably change the
results.

We start with calculating v2, Eq. (45). In addition to the angular integration we also integrate the absolute values
of transverse momenta within finite width bins. Thus we calculate

v2
2(k, k0,�) =

R k+�/2

k��/2
k2dk2

R k0+�/2

k0��/2
k3dk3

R
d�2d�3e

i2(�2��3) d2N(2)

d2k2d2k3R k+�/2

k��/2
k2dk2

R k0+�/2

k0��/2
k3dk3

R
d�2d�3

d2N(2)

d2k2d2k3

. (66)

We take k � �, k0 � � and � ⇠ Qs.
• only the correlated part in the numerator & correlated and uncorrelated parts in the denominator.

• Angular integrations + integrations over the transverse momenta within finite width bins!

• Assume: k � ∆, k ′ � ∆, ∆ ∼ Qs and λ = 1/25.

•v2
2 is multiplied by the factor (N2

c − 1)S⊥Q2
s in order to exhibit universal features of the result

applicable to any target. For p-Pb or p-Au: (N2
c − 1)S⊥Q2

s ∼ 200.
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Momentum dependent second flow harmonic: v 2
2

In momentum space: width of the BE correlations ∼ Qs & width of the HBT correlations � Qs

non-overlapping bins overlapping bins
∆ < |k − k ′| → ∆ ≈ |k − k ′| → ∆ > |k − k ′|

only BE contribution HBT starts to contribute BE+HBT contribution12
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FIG. 1: Left panel: The second flow harmonic, v2

2 as a function of the momentum. The calculation of v2
2 is performed for two

cases: a) the same momentum of the pair, b) the momentum of the pair is o↵set by the saturation momentum of the target in
order to avoid the gluon HBT e↵ect. The bin width in both cases is � = Qs/2.
Right panel: The second flow harmonic, v2

2 as a function of the bin width. The centers of the two bins are chosen at k = 4.5Qs,
k0 = 5Qs.

We find it interesting to explore the interplay between the relative position of the centers of the two bins, k and k0

and the width of a bin �. As discussed above, v2
2 receives contributions form two types of correlations: the Bose and

the HBT correlations. While the width of the Bose correlation in momentum space is naturally of order Qs, the HBT
correlations have much shorter range (in our expressions they are formally represented by a delta function). Thus we
expect that when |k�k0| < � both, the HBT and Bose e↵ects will contribute to v2

2 , however when there is no overlap
between the two bins, the HBT correlation should disappear. We thus expect a characteristic dependence of v2

2 on �
(at fixed k � k0) such that v2

2 should vary steeply when k � k0 ⇡ �.
Fig. 1 shows our results for v2

2 . In the left panel we see that the dependence of v2
2 on the transverse momentum is

rather di↵erent for overlapping and non overlapping momentum bins. In the right panel we observe, as expected, a
sharp change in v2

2 at the point when the width of the interval equals the distance between the interval midpoints.
Interestingly we learn from Fig. 1 that the contribution of the HBT correlations to v2

2 is overwhelmingly large: it is
by about a factor of ⇠ 50 dominates over the contribution of Bose enhancement (right panel of Fig. 1).

Next up is the correlation of v2
2 with multiplicity, Eq. (47). Again we integrate over bins of width � for the two

momenta,

dN (3)

d2k1d2k2d2k3

����
X

!
Z k+�/2

k��/2

k2dk2

Z k0+�/2

k0��/2

k3dk3
dN (3)

d2k1d2k2d2k3

����
X

. (67)

Our numerical results for the correlation function between v2
2 and the total multiplicity are presented in Fig. 2. We

first take coinciding bins, that is k = k0 and the bin width � = Qs/2. In this kinematics v2
2 is dominated by HBT.

The result is the solid (blue) curve in Fig. 2. The dashed curve in Fig. 2 displays the situation when the momenta
are o↵set by Qs, that is k0 = k + Qs. This choice eliminates the HBT contribution to the azimuthal anisotropy v2

2 .
Fig. 2 shows that the normalized correlation function is strongly suppressed for values of bin width for which v2

2 is
sizable, which is when the HBT e↵ect in v2

2 is dominant.
The same e↵ect is also demonstrated in Fig. 2, where we show the correlation function as a function of the bin

width �. For illustration, we chose the centers of the bins at k = 4.5Qs and k0 = 5Qs. When �/Qs is small, the bins
are not overlapping and no HBT contribution is present in v2

2 . At these values of bin width the correlation between
v2
2 and multiplicity is sizable. However for � > 1

2Qs = |k � k0| there is a steep decrease of the correlation and it very
sharply drops to negligible values.

We observe a similar behavior for the correlation of v2
2 with transverse momentum. Fig. 3 shows this correlation as

a function of transverse momentum and the same quantity as a function of the bin width.
Finally, Fig. 4 shows the ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum. The correlation with

transverse momentum clearly drops with k slower than the correlation with multiplicity.

• BE dominated regime:
very weak dependence on k .
⇒ BE cont. & (Single inc.)2 scale with the same
power of momentum.

• BE+HBT regime:
HBT � BE contribution.
v2 is rising towards smaller values of k.
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FIG. 1: Left panel: The second flow harmonic, v2
2 as a function of the momentum. The calculation of v2

2 is performed for two
cases: a) the same momentum of the pair, b) the momentum of the pair is o↵set by the saturation momentum of the target in
order to avoid the gluon HBT e↵ect. The bin width in both cases is � = Qs/2.
Right panel: The second flow harmonic, v2

2 as a function of the bin width. The centers of the two bins are chosen at k = 4.5Qs,
k0 = 5Qs.

We find it interesting to explore the interplay between the relative position of the centers of the two bins, k and k0

and the width of a bin �. As discussed above, v2
2 receives contributions form two types of correlations: the Bose and

the HBT correlations. While the width of the Bose correlation in momentum space is naturally of order Qs, the HBT
correlations have much shorter range (in our expressions they are formally represented by a delta function). Thus we
expect that when |k�k0| < � both, the HBT and Bose e↵ects will contribute to v2

2 , however when there is no overlap
between the two bins, the HBT correlation should disappear. We thus expect a characteristic dependence of v2

2 on �
(at fixed k � k0) such that v2

2 should vary steeply when k � k0 ⇡ �.
Fig. 1 shows our results for v2

2 . In the left panel we see that the dependence of v2
2 on the transverse momentum is

rather di↵erent for overlapping and non overlapping momentum bins. In the right panel we observe, as expected, a
sharp change in v2

2 at the point when the width of the interval equals the distance between the interval midpoints.
Interestingly we learn from Fig. 1 that the contribution of the HBT correlations to v2

2 is overwhelmingly large: it is
by about a factor of ⇠ 50 dominates over the contribution of Bose enhancement (right panel of Fig. 1).

Next up is the correlation of v2
2 with multiplicity, Eq. (47). Again we integrate over bins of width � for the two

momenta,

dN (3)

d2k1d2k2d2k3

����
X

!
Z k+�/2

k��/2

k2dk2

Z k0+�/2

k0��/2

k3dk3
dN (3)

d2k1d2k2d2k3

����
X

. (67)

Our numerical results for the correlation function between v2
2 and the total multiplicity are presented in Fig. 2. We

first take coinciding bins, that is k = k0 and the bin width � = Qs/2. In this kinematics v2
2 is dominated by HBT.

The result is the solid (blue) curve in Fig. 2. The dashed curve in Fig. 2 displays the situation when the momenta
are o↵set by Qs, that is k0 = k + Qs. This choice eliminates the HBT contribution to the azimuthal anisotropy v2

2 .
Fig. 2 shows that the normalized correlation function is strongly suppressed for values of bin width for which v2

2 is
sizable, which is when the HBT e↵ect in v2

2 is dominant.
The same e↵ect is also demonstrated in Fig. 2, where we show the correlation function as a function of the bin

width �. For illustration, we chose the centers of the bins at k = 4.5Qs and k0 = 5Qs. When �/Qs is small, the bins
are not overlapping and no HBT contribution is present in v2

2 . At these values of bin width the correlation between
v2
2 and multiplicity is sizable. However for � > 1

2Qs = |k � k0| there is a steep decrease of the correlation and it very
sharply drops to negligible values.

We observe a similar behavior for the correlation of v2
2 with transverse momentum. Fig. 3 shows this correlation as

a function of transverse momentum and the same quantity as a function of the bin width.
Finally, Fig. 4 shows the ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum. The correlation with

transverse momentum clearly drops with k slower than the correlation with multiplicity.

sharp transition of v2 as a function of ∆.

∆/Qs < 0.5→ BE dominated regime.
∆/Qs ∼ 0.5→ HBT starts contributing.

BE+HBT regime: HBT overwhelmingly dominates!
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Correlated 3-gluon spectrum

3-gluon spectrum: upon integration over k1, q1, q2 and q3, again two types of terms arise:
Bose enhancement type of contributions: (X1, X3 and X4)

9

In our case however the calculation of the Pearson coe�cient would involve the calculation of the four gluon inclusive
production (i.e. h(v2

2)i) which is relatively complicated. In addition, we are not interested to compare the correlation
with the autocorrelations of v2 and N , but rather in comparing to to the average value of the observables themselves.
We will therefore not calculate the Pearson coe�cient, but rather define the normalized correlator as

ON,v2
=

Z
d�2 d�3 ei2(�2��3)

Z
d2k1

dN (3)

d2k1 d2k2 d2k3

� Z
d�2 d�3 ei2(�2��3)

dN (2)

d2k2d2k3

Z
d2k1

dN (1)

d2k1

=

Z
d�2 d�3 ei2(�2��3)

Z
d2k1

dN (3)

d2k1 d2k2 d2k3

����
X

� Z
d�2 d�3 ei2(�2��3)

dN (2)

d2k2d2k3

����
Q

Z
d2k1

dN (1)

d2k1
, (47)

where the second equality follows since only the fully correlated part of three (two) gluon inclusive production con-
tributes to the numerator (denominator). The numerator in this definition is precisely the same as the numerator in
Eq. (46) with X = v2

2 and Y = N , but it is normalized to the product hXihY i rather than to the square root of the
product of variances of X and Y .

The correlation between v2 and the total multiplicity of produced particles (per unit rapidity) is related to the
inclusive three gluon production cross section (13). Starting from Eq. (28), and integrating over k1, the result can be
split similarly as in Eq. (28):

Z
d2k1

dN (3)

d2k1d2k2d2k3

����
X

= X1 + X2 + X3 + X4 + X5 . (48)

We are able to perform the k1 integration analytically, while the remaining angular integrations are performed nu-
merically.

Recall that we are only considering large transverse momenta of the observed particles, |k2(3)| � Qs. This large
transverse momentum can be achieved in two distinct ways: either A) the incoming projectile gluons already have large
transverse momentum and the momentum transfer in the scattering is relatively small, or B) most of the final state
momentum is transferred to a projectile gluon in the scattering. The two contributions have very di↵erent behaviors.
On the one hand, large transfer momentum is exponentially suppressed in the GBW model as exp{�k2/Q2

s}, which
favors contribution A. On the other hand, the number of gluons in the projectile wave function is strongly peaked at
small momentum, so that Np(p)/Np(q) ⇠ q2/p2. Thus the number of incoming gluons at high transverse momentum
is suppressed roughly by a factor 1/(S?k2). For very large transverse area this suppression may be significant enough
so that contribution B can become comparable or even larger than contribution A. However for a proton projectile
this factor is very unlikely to compete with the exponential suppression due to high momentum transfer. In our
calculations, therefore, we only keep the contribution due to small (⇠ O(Qs)) momentum transfer from the target.

The calculation is fairly lengthy and the details are given in the Appendix A. The results are presented below. In
general we find two types of terms. The one type gives a correlation which in momentum space has width of order
Qs. This arises from Bose correlations between the incoming gluons 2 and 3 in conjunction with either HBT or Bose
correlations of any one of these gluons with gluon 1. These terms are:
• X1:

X1 =
1

2
↵3

s(4⇡)6(N2
c � 1) µ6 S? e�(k2�k3)

2/2Q2
s

1

k4
2

⇥
⇢8
>>:1

2
+ Q2

s


1

k2
2

+
22

(k2 + k3)2

�
+ Q4

s


3

k4
2

+
2!

k2
2

22

(k2 + k3)2
+

24

(k2 + k3)4

�9
>>; 1

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)4

+ Q4
s

26

(k2 + k3)8


1 + (ki

2 � ki
3)

✓
ki
2

k2
2

� ki
3

k2
3

◆��
. (49)

As explained in the previous section, X1 contributes largely to the forward correlation of the produced gluons. Indeed,
as seen from its final expression, X1 is enhanced in the forward region k2 = k3, where the exponential pre factor is
equal to unity,

X1(k2 = k3) = ↵3
s(4⇡)6(N2

c � 1) µ6 S?
1

8

Q4
s

k12
2

. (50)

The width of the forward region is clearly |k2 � k3| ⇠ Qs , and away from this region this expression is exponentially
suppressed.

HBT type of contributions: (X2 and X5)
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• X3: Comparing Eqs. (75) and (116), one notes that X3 = X1(k2 $ k3):

X3 =
1

2
↵3

s(4⇡)6(N2
c � 1) µ6 S? e�(k2�k3)

2/2Q2
s

1
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⇥
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>>:1

2
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
1
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+
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(k2 + k3)2

�
+ Q4
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
3
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+
2!

k2
3

22

(k2 + k3)2
+

24

(k2 + k3)4

�9
>>; 1

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)4

+ Q4
s

26

(k2 + k3)8


1 + (ki

2 � ki
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✓
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k2
2

� ki
3

k2
3

◆��
. (51)

• X4:

X4 = ↵3
s(4⇡)6(N2

c � 1) µ6 S? e�(k2�k3)
2/2Q2

s

⇢
1 + 8

22 Q2
s

(k2 + k3)2
+ 76

24 Q4
s

(k2 + k3)4

�
23

k2
2k

2
3

(k2 � k3)
4

(k2 + k3)8

+
24 Q4

s

(k2 + k3)4
22

(k2 + k3)2


5

2

26

(k2 + k3)6
� 9

4

22

k2
2k

2
3(k2 + k3)2

��
. (52)

We again notice that X4 is enhanced In the limit k2 = k3:

X4(k2 = k3) ⇡ ↵3
s(4⇡)6(N2

c � 1) µ6 S?
1

4

Q4
s

k12
2

. (53)

The second type of terms is due to HBT correlations between gluons 2 and 3. These correlations in the translationally
invariant approximation lead to � functional terms, contributing when k2 = ±k3. Accounting for a finite projectile
area would regulate the delta functions smearing them on the scale of order 1/S?. Nevertheless, the correlation due
to these terms is very narrow. We will come back to this point in the next section when analyzing our numerical
results. The terms of this type are:
• X2:

X2 = ↵3
s

1

2
(4⇡)7(N2

c � 1) µ6 S?
⇥
�(2)(k2 + k3) + �(2)(k2 � k3)

⇤ 1

4

Q6
s

k12
2

(54)

• X5:

X5 = ↵3
s

1

2
(4⇡)7(N2

c � 1) µ6 S?
h
�(2)(k2 + k3) + �(2)(k2 � k3)

i 1

8

Q6
s

k12
2

(55)

In the next section we present the results of the numerical evaluation of the angular integral of these expressions
as defined in Eq. (47).

C. v2 vs mean transverse momentum

The second observable we consider is the correlation between mean transverse momentum and v2 defined as

Ok,v2
=

Z
d�2 d�3 ein(�2��3)

Z
d2k1 k2

1

dN (3)

d2k1 d2k2 d2k3

����
X

� Z
d�2 d�3 ein(�2��3)

dN (2)

d2k2d2k3

����
Q

Q2
s

Z
d2k1

dN (1)

d2k1
.(56)

In accordance to our discussion earlier, we have substituted Q2
s for the average transverse momentum in the ”normal-

ization” in the denominator.
The computation of this observable proceeds very similarly to the one considered in the previous subsection. Details

are given in Appendix B. Here we present the results:
Z

d2k1 k2
1

dN (3)

d2k1 d2k2 d2k3

����
X

= X̄1 + X̄2 + X̄3 + X̄4 + X̄5 , (57)

with
• X̄1:

X̄1 =
1
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
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
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+ (k3 ! �k3), (58)

ON,v2 : these terms are ready to be plugged in
∫
dφ2dφ3 e i2(φ2−φ3)

∫
d2k1

dN(3)

d2k1d2k2d2k3

∣∣
X

.

in addition to the angular integrations, we also integrate over bins of width ∆ for the two momenta k2

and k3:
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FIG. 1: Left panel: The second flow harmonic, v2
2 as a function of the momentum. The calculation of v2

2 is performed for two
cases: a) the same momentum of the pair, b) the momentum of the pair is o↵set by the saturation momentum of the target in
order to avoid the gluon HBT e↵ect. The bin width in both cases is � = Qs/2.
Right panel: The second flow harmonic, v2

2 as a function of the bin width. The centers of the two bins are chosen at k = 4.5Qs,
k0 = 5Qs.

We find it interesting to explore the interplay between the relative position of the centers of the two bins, k and k0

and the width of a bin �. As discussed above, v2
2 receives contributions form two types of correlations: the Bose and

the HBT correlations. While the width of the Bose correlation in momentum space is naturally of order Qs, the HBT
correlations have much shorter range (in our expressions they are formally represented by a delta function). Thus we
expect that when |k�k0| < � both, the HBT and Bose e↵ects will contribute to v2

2 , however when there is no overlap
between the two bins, the HBT correlation should disappear. We thus expect a characteristic dependence of v2

2 on �
(at fixed k � k0) such that v2

2 should vary steeply when k � k0 ⇡ �.
Fig. 1 shows our results for v2

2 . In the left panel we see that the dependence of v2
2 on the transverse momentum is

rather di↵erent for overlapping and non overlapping momentum bins. In the right panel we observe, as expected, a
sharp change in v2

2 at the point when the width of the interval equals the distance between the interval midpoints.
Interestingly we learn from Fig. 1 that the contribution of the HBT correlations to v2

2 is overwhelmingly large: it is
by about a factor of ⇠ 50 dominates over the contribution of Bose enhancement (right panel of Fig. 1).

Next up is the correlation of v2
2 with multiplicity, Eq. (47). Again we integrate over bins of width � for the two

momenta,

dN (3)

d2k1d2k2d2k3

����
X

!
Z k+�/2

k��/2

k2dk2

Z k0+�/2

k0��/2

k3dk3
dN (3)

d2k1d2k2d2k3

����
X

. (67)

Our numerical results for the correlation function between v2
2 and the total multiplicity are presented in Fig. 2. We

first take coinciding bins, that is k = k0 and the bin width � = Qs/2. In this kinematics v2
2 is dominated by HBT.

The result is the solid (blue) curve in Fig. 2. The dashed curve in Fig. 2 displays the situation when the momenta
are o↵set by Qs, that is k0 = k + Qs. This choice eliminates the HBT contribution to the azimuthal anisotropy v2

2 .
Fig. 2 shows that the normalized correlation function is strongly suppressed for values of bin width for which v2

2 is
sizable, which is when the HBT e↵ect in v2

2 is dominant.
The same e↵ect is also demonstrated in Fig. 2, where we show the correlation function as a function of the bin

width �. For illustration, we chose the centers of the bins at k = 4.5Qs and k0 = 5Qs. When �/Qs is small, the bins
are not overlapping and no HBT contribution is present in v2

2 . At these values of bin width the correlation between
v2
2 and multiplicity is sizable. However for � > 1

2Qs = |k � k0| there is a steep decrease of the correlation and it very
sharply drops to negligible values.

We observe a similar behavior for the correlation of v2
2 with transverse momentum. Fig. 3 shows this correlation as

a function of transverse momentum and the same quantity as a function of the bin width.
Finally, Fig. 4 shows the ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum. The correlation with

transverse momentum clearly drops with k slower than the correlation with multiplicity.
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v2 and total multiplicity correlations

non-overlapping bins overlapping bins
∆ < |k − k ′| → ∆ ≈ |k − k ′| → ∆ > |k − k ′|

only BE contribution HBT starts to contribute BE+HBT contribution13
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FIG. 2: Left panel: The three particle correlation function ON,v2 defined by the normalized correlations between v2
2 and the

total multiplicity of produced particles. The calculation of v2
2 is performed for two cases: a) the same momentum of the pair,

b) the momentum of the pair is o↵set by the saturation momentum of the target in order to avoid the gluon HBT e↵ect. The
bin width in both cases is � = Qs/2.
Right panel: The three particle correlation function ON,v2 as a function of the bin width.
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FIG. 3: Left panel: The three particle correlation function Ok,v2 . Kinematics is the same as in Fig. 2.
Right panel: The three particle correlation Ok,v2 as a function of bin width.
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FIG. 4: The ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum.

non-overlapping bins: (no HBT contribution to v2)
overlapping bins: (v2 is dominated by HBT)

ON,v2 |HBT is much weaker than ON,v2 |BE .

• ON,v2 is a decreasing funct. of k.
(N is dominated by soft gluons, correlations we are
looking has large k already in the incoming w.f.)
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FIG. 2: Left panel: The three particle correlation function ON,v2 defined by the normalized correlations between v2
2 and the

total multiplicity of produced particles. The calculation of v2
2 is performed for two cases: a) the same momentum of the pair,

b) the momentum of the pair is o↵set by the saturation momentum of the target in order to avoid the gluon HBT e↵ect. The
bin width in both cases is � = Qs/2.
Right panel: The three particle correlation function ON,v2 as a function of the bin width.
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FIG. 4: The ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum.

sharp transition of ON,v2 as a function of ∆.

∆/Qs < 0.5→ BE dominated regime:
correlation is sizable.

∆/Qs ∼ 0.5→ HBT starts contributing.

∆/Qs > 0.5→ BE+HBT regime:
correlation drops by factor of 30 to 50!

The transition behavior in ON,v2 is opposite to that of v2.
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FIG. 1: Left panel: The second flow harmonic, v2
2 as a function of the momentum. The calculation of v2

2 is performed for two
cases: a) the same momentum of the pair, b) the momentum of the pair is o↵set by the saturation momentum of the target in
order to avoid the gluon HBT e↵ect. The bin width in both cases is � = Qs/2.
Right panel: The second flow harmonic, v2

2 as a function of the bin width. The centers of the two bins are chosen at k = 4.5Qs,
k0 = 5Qs.

We find it interesting to explore the interplay between the relative position of the centers of the two bins, k and k0

and the width of a bin �. As discussed above, v2
2 receives contributions form two types of correlations: the Bose and

the HBT correlations. While the width of the Bose correlation in momentum space is naturally of order Qs, the HBT
correlations have much shorter range (in our expressions they are formally represented by a delta function). Thus we
expect that when |k�k0| < � both, the HBT and Bose e↵ects will contribute to v2

2 , however when there is no overlap
between the two bins, the HBT correlation should disappear. We thus expect a characteristic dependence of v2

2 on �
(at fixed k � k0) such that v2

2 should vary steeply when k � k0 ⇡ �.
Fig. 1 shows our results for v2

2 . In the left panel we see that the dependence of v2
2 on the transverse momentum is

rather di↵erent for overlapping and non overlapping momentum bins. In the right panel we observe, as expected, a
sharp change in v2

2 at the point when the width of the interval equals the distance between the interval midpoints.
Interestingly we learn from Fig. 1 that the contribution of the HBT correlations to v2

2 is overwhelmingly large: it is
by about a factor of ⇠ 50 dominates over the contribution of Bose enhancement (right panel of Fig. 1).

Next up is the correlation of v2
2 with multiplicity, Eq. (47). Again we integrate over bins of width � for the two

momenta,

dN (3)

d2k1d2k2d2k3

����
X

!
Z k+�/2

k��/2

k2dk2

Z k0+�/2

k0��/2

k3dk3
dN (3)

d2k1d2k2d2k3

����
X

. (67)

Our numerical results for the correlation function between v2
2 and the total multiplicity are presented in Fig. 2. We

first take coinciding bins, that is k = k0 and the bin width � = Qs/2. In this kinematics v2
2 is dominated by HBT.

The result is the solid (blue) curve in Fig. 2. The dashed curve in Fig. 2 displays the situation when the momenta
are o↵set by Qs, that is k0 = k + Qs. This choice eliminates the HBT contribution to the azimuthal anisotropy v2

2 .
Fig. 2 shows that the normalized correlation function is strongly suppressed for values of bin width for which v2

2 is
sizable, which is when the HBT e↵ect in v2

2 is dominant.
The same e↵ect is also demonstrated in Fig. 2, where we show the correlation function as a function of the bin

width �. For illustration, we chose the centers of the bins at k = 4.5Qs and k0 = 5Qs. When �/Qs is small, the bins
are not overlapping and no HBT contribution is present in v2

2 . At these values of bin width the correlation between
v2
2 and multiplicity is sizable. However for � > 1

2Qs = |k � k0| there is a steep decrease of the correlation and it very
sharply drops to negligible values.

We observe a similar behavior for the correlation of v2
2 with transverse momentum. Fig. 3 shows this correlation as

a function of transverse momentum and the same quantity as a function of the bin width.
Finally, Fig. 4 shows the ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum. The correlation with

transverse momentum clearly drops with k slower than the correlation with multiplicity.
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FIG. 2: Left panel: The three particle correlation function ON,v2 defined by the normalized correlations between v2
2 and the

total multiplicity of produced particles. The calculation of v2
2 is performed for two cases: a) the same momentum of the pair,

b) the momentum of the pair is o↵set by the saturation momentum of the target in order to avoid the gluon HBT e↵ect. The
bin width in both cases is � = Qs/2.
Right panel: The three particle correlation function ON,v2 as a function of the bin width.
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FIG. 3: Left panel: The three particle correlation function Ok,v2 . Kinematics is the same as in Fig. 2.
Right panel: The three particle correlation Ok,v2 as a function of bin width.
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FIG. 4: The ratio R ⌘ Ok,v2/ON,v2 as a function of transverse momentum.

non-overlapping bins: ∆/Qs < 0.5 – v2 is small & sizable correlation between N and v2

(No HBT contribution)
non-overlapping bins: ∆/Qs > 0.5 – v2 is large & negligable correlation between N and v2

(HBT start contributing)

ON,v2 =

∫
dφ2dφ3 e i2(φ2−φ3)

∫
d2k1

dN(3)

d2k1d2k2d2k3

∣∣
X∫

dφ2dφ3 e i2(φ2−φ3) dN(2)

d2k2d2k3

∣∣
Q

∫
d2k1

dN(1)

d2k1

conclusion:

•
∫
dφ2dφ3 e i2(φ2−φ3)

∫
d2k1

dN(3)

d2k1d2k2d2k3

∣∣
X

is a smooth function of ∆.

• the drop in ON,v2 is driven entirely by the sharp rise
∫
dφ2dφ3 e i2(φ2−φ3) dN(2)

d2k2d2k3

∣∣
Q
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Summary

• We have computed v2 & correlations of v2 with total multiplicity in the dilute-dense CGC
framework.

• Our results are valid at large Nc and large transverse momentum.

• Correlations of v2 and total multiplicity is very small and consistent with the data.
(Disclaimer: we do not attempt to describe the data, this is just a qualitative study of the
quantum statistics on correlations.)

• We observe a distinct behavior of both v2 & correlations v2 and total multiplicity as a
function of the transverse momentum bin ∆ due to HBT contribution.
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