Two particle correlations in pA collisions from the CGC

Tolga Altinoluk

National Centre for Nuclear Research (NCBJ), Warsaw, PL

Initial Stages 2021 (virtual meeting)
January 12, 2021
based on [Altinoluk, Armesto, Kovner, Lublinsky, Skokov - arXiv:2012.01810]

Narodowe Centrum Badań Jadrowych National Centre for Nuclear Research
ŚWIERK

Two particle correlations

Motivation: Ridge structure

- correlations between particles over large intervals of rapidity peaking at zero and π relative azimuthal angle.
- observed first at RHIC in $\mathrm{Au}-\mathrm{Au}$ collisions.
- observed at LHC for high multiplicity pp and pA collisions.
[ATLAS Collaboration - arXiv:1609.06213]

ATLAS pp $0.5<\mathrm{p}_{\mathrm{T}}^{\mathrm{a} \mathrm{b}}<5 \mathrm{GeV}$

 $\sqrt{\mathrm{S}}=5.02 \mathrm{TeV}, 170 \mathrm{nb}^{-1}$

Correlations within the CGC framework

Ridge in HICs \leftrightarrow collective flow due to strong final state interactions
(good description of the data in the framework of relativistic viscous hydrodynamics)
Ridge in small size systems: similar reasoning looks tenuous but hydro describes the data very well.
Can it be initial state effect?
idea: final state particles carry the imprint of the partonic correlations that exist in the initial state.
Most frequently used mechanism to explain the ridge correlations in the CGC framework:

Glasma graph approach to two gluon production:

[Dumitru, Gelis, McLerran, Venugopalan - arXiv:0804.3858]
[Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan - arXiv:1009.5295]
\star Glasma graph calculation contains two physical effects:

- Bose enhancement of the gluons in projectile/target wave function

Going beyond the glasma approach in pA collisions

Two particle correlations beyond the glasma graph approach: 2 gluon production in pA collisions
[TA, Armesto, Kovner, Lublinsky - arXiv:1805.07739]
Double Inclusive spectrum:

$$
\begin{aligned}
& \frac{d N^{(2)}}{d^{2} k_{1} d^{2} k_{2}} \propto \int_{z_{i} \bar{z}_{i}} e^{i k_{1} \cdot\left(z_{1}-\bar{z}_{1}\right)+i k_{2} \cdot\left(z_{2}-\bar{z}_{2}\right)} \int_{x_{i} y_{i}} A^{i}\left(x_{1}-z_{1}\right) A^{i}\left(\bar{z}_{1}-y_{1}\right) A^{j}\left(x_{2}-z_{2}\right) A^{j}\left(\bar{z}_{2}-y_{2}\right) \\
& \times\left\langle\rho^{a_{1}}\left(x_{1}\right) \rho^{a_{2}}\left(x_{2}\right) \rho^{b_{1}}\left(y_{1}\right) \rho^{b_{2}}\left(y_{2}\right)\right\rangle_{P} \\
& \times\left\langle\left[U\left(z_{1}\right)-U\left(x_{1}\right)\right]^{a_{1} c}\left[U^{\dagger}\left(\bar{z}_{1}\right)-U^{\dagger}\left(y_{1}\right)\right]^{c b_{1}}\left[U\left(z_{2}\right)-U\left(x_{2}\right)\right]^{a_{2} d}\left[U^{\dagger}\left(\bar{z}_{2}\right)-U^{\dagger}\left(y_{2}\right)\right]^{d b_{2}}\right\rangle_{T}
\end{aligned}
$$

A^{i} is the standard WW field.
Projectile averaging: $\left\langle\rho^{a_{1}} \rho^{a_{2}} \rho^{b_{1}} \rho^{b_{2}}\right\rangle=\left\langle\rho^{a_{1}} \rho^{b_{1}}\right\rangle\left\langle\rho^{a_{2}} \rho^{b_{2}}\right\rangle+\left\langle\rho^{a_{1}} \rho^{a_{2}}\right\rangle\left\langle\rho^{b_{1}} \rho^{b_{2}}\right\rangle+\left\langle\rho^{a_{1}} \rho^{b_{2}}\right\rangle\left\langle\rho^{a_{2}} \rho^{b_{1}}\right\rangle$

$$
\text { with }\left\langle\rho^{a}(x) \rho^{b}(y)\right\rangle=\delta^{a b} \mu^{2}(x, y)
$$

Target averaging \rightarrow dipole and quadrupole operators:

$$
\begin{aligned}
\langle Q(x, y, z, v)\rangle_{T} & \rightarrow d(x, y) d(z, v)+d(x, v) d(z, y)+\frac{1}{N_{c}^{2}-1} d(x, z) d(y, v) \\
\langle D(x, y) D(z, v)\rangle_{T} & \rightarrow d(x, y) d(z, v)+\frac{1}{\left(N_{c}^{2}-1\right)^{2}}[d(x, v) d(y, z)+d(x, z) d(v, y)]
\end{aligned}
$$

Integration over the coordinates with

$$
\Rightarrow \quad \frac{d N^{(2)}}{d^{2} k_{1} d^{2} k_{2}}=\left.\frac{d N^{(2)}}{d^{2} k_{1} d^{2} k_{2}}\right|_{d d}+\left.\frac{d N^{(2)}}{d^{2} k_{1} d^{2} k_{2}}\right|_{Q}
$$

translationally invariant dipoles

Going beyond the glasma approach in pA collisions - II

Correlated part of the 2-gluon spectrum:

$$
\left.\frac{d N^{(2)}}{d^{2} k_{1} d^{2} k_{2}}\right|_{Q} \propto \int_{q_{1} q_{2}} d\left(q_{1}\right) d\left(q_{2}\right)\left[I_{Q, 1}+I_{Q, 2}\right]
$$ where

$I_{Q, 1}=\mu^{2}\left(k_{1}-q_{1}, q_{2}-k_{2}\right) \mu^{2}\left(k_{2}-q_{2}, q_{1}-k_{1}\right) L^{i}\left(k_{1}, q_{1}\right) L^{i}\left(k_{1}, q_{1}\right) L^{j}\left(k_{2}, q_{2}\right) L^{j}\left(k_{2}, q_{2}\right)+\left(k_{2} \rightarrow-k_{2}\right)$
$I_{Q, 2}=\mu^{2}\left(k_{1}-q_{1}, q_{1}-k_{2}\right) \mu^{2}\left(k_{2}-q_{2}, q_{2}-k_{1}\right) L^{i}\left(k_{1}, q_{1}\right) L^{i}\left(k_{1}, q_{2}\right) L^{j}\left(k_{2}, q_{1}\right) L^{j}\left(k_{2}, q_{2}\right)+\left(k_{2} \rightarrow-k_{2}\right)$
with $L^{i}(k, q)=\left[\frac{(k-q)^{i}}{(k-q)^{2}}-\frac{k^{i}}{k^{2}}\right]$ is the Lipatov vertex.

Generalization to the 3-gluon spectrum:

$$
\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}=\left.\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{d d d}+\left.\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{d Q}+\left.\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X}
$$

$d d d$ - term: all three gluons are uncorrelated.
$d Q$ - term: one gluon is uncorrelated from the other two.
X-term: all three gluons are correlated.

$$
\left.\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X} \propto \int_{q_{1} q_{2} q_{3}} d\left(q_{1}\right) d\left(q_{2}\right) d\left(q_{3}\right)\left[I_{X, 1}+I_{X, 2}+I_{X, 3}+I_{X, 4}+I_{X, 5}\right]
$$

Each $I_{X, \alpha}$ contribution: 8 different terms with $3-\mu^{2}$ functions and 6 Lipatov vertices.
Total of 40 different terms!

v_{2} and correlations

[TA, Armesto, Kovner, Lublinsky, Skokov - arXiv:2012.01810]

Can we compute the correlation of v_{2} with total multiplicity?

$$
\mathcal{O}_{N, v_{2}}=\frac{\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \int d^{2} k_{1} \frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X}}{\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \frac{d N^{(2)}}{d^{2} k_{2} d^{2} k_{3}}\right|_{Q} \int d^{2} k_{1} \frac{d N^{(1)}}{d^{2} k_{1}}}
$$

Disclaimer:

- MV model: $\mu^{2}(k, q)=(2 \pi)^{2} \mu^{2} \delta^{(2)}(k+q) \quad \& \quad$ GBW model: $d(q)=\frac{4 \pi}{Q_{s}^{2}} e^{-q^{2} / Q_{s}^{2}}$
- assume $k_{2}^{2} \sim k_{3}^{2} \gg Q_{s}^{2}$ and neglect the terms that exponentially suppressed.
- assume large N_{c}.

Total multiplicity:

$$
\frac{d N^{(1)}}{d^{2} k_{1}} \propto \int_{q_{1}} d\left(q_{1}\right) \mu^{2}\left(k_{1}-q_{1}, q_{1}-k_{1}\right) L^{i}\left(k_{1}, q_{1}\right) L^{i}\left(k_{1}, q_{1}\right)
$$

Integration over q_{1} :

$$
\frac{d N^{(1)}}{d^{2} k_{1}}=\alpha_{s}(4 \pi)\left(N_{c}^{2}-1\right) \mu^{2} S_{\perp} e^{-k_{1}^{2} / Q_{s}^{2}}\left\{\frac{2}{k_{1}^{2}}-\frac{1}{k_{1}^{2}} e^{k_{1}^{2} / Q_{s}^{2}}+\frac{1}{Q_{s}^{2}}\left[\operatorname{Ei}\left(\frac{k_{1}^{2}}{Q_{s}^{2}}\right)-\operatorname{Ei}\left(\frac{k_{1}^{2} \lambda}{Q_{s}^{2}}\right)\right]\right\}
$$

$S_{\perp} \equiv$ transverse area of the projectile $\quad \& \quad \lambda \sim 1 /\left(S_{\perp} Q_{s}^{2}\right)$ IR cutoff
In $p A: Q_{s} \sim 1 \mathrm{GeV}$ and $S_{\perp} \sim 1 / \Lambda_{Q C D}^{2} \rightarrow \lambda \sim 1 /\left(S_{\perp} Q_{s}^{2}\right) \sim 1 / 25$ is used in the numerical computations.

v_{2} and correlations

2-gluon spectrum and v_{2} : upon integration over q_{2} and q_{3}, two types of terms arise:

Bose enhancement type:

$$
\begin{gathered}
Q_{1}=\alpha_{s}^{2}(4 \pi)^{2}\left(N_{c}^{2}-1\right) \mu^{4} S_{\perp} \frac{1}{\pi Q_{s}^{2}} e^{-\left(k_{2}-k_{3}\right)^{2} / 2 Q_{s}^{2}}\left\{\left[\frac{1}{2}+\frac{2^{2} Q_{s}^{2}}{\left(k_{2}+k_{3}\right)^{2}}+\frac{2^{4} Q_{s}^{4}}{\left(k_{2}+k_{3} 4^{4}\right.}\right] \frac{1}{k_{2}^{2} k_{3}^{2}} \frac{\left(k_{2}-k_{3}\right)^{4}}{\left(k_{2}+k_{3}\right)^{4}}\right. \\
\left.+Q_{s}^{4} \frac{2^{6}}{\left(k_{2}+k_{3}\right)^{8}}\left[1+\left(k_{2}^{i}-k_{3}^{i}\right)\left(\frac{k_{2}^{i}}{k_{2}^{2}}-\frac{k_{3}^{i}}{k_{3}^{2}}\right)\right]\right\}+\left(k_{3} \rightarrow-k_{3}\right) . \\
Q_{2}=\alpha_{s}^{2}(4 \pi)^{2}\left(N_{c}^{2}-1\right) \mu^{4} S_{\perp}(2 \pi)^{2}\left[\delta^{(2)}\left(k_{2}+k_{3}\right)+\delta^{(2)}\left(k_{2}-k_{3}\right)\right] \frac{1}{2} \frac{Q_{s}^{4}}{k_{2}^{8}}
\end{gathered}
$$

HBT type:
When calculating the $\mathcal{O}_{N, v_{2}}$ these two terms are ready to be plugged in $\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \frac{d N^{(2)}}{d^{2} k_{2} d^{2} k_{3}}\right|_{Q}$

BUT let us first compute

$$
v_{2}^{2}\left(k, k^{\prime}, \Delta\right)=\frac{\int_{k-\Delta / 2}^{k+\Delta / 2} k_{2} d k_{2} \int_{k^{\prime}-\Delta / 2}^{k^{\prime}+\Delta / 2} k_{3} d k_{3} \int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \frac{d^{2} N^{(2)}}{d^{2} k_{k} d^{2} k_{3}}}{\int_{k-\Delta / 2}^{k+\Delta / 2} k_{2} d k_{2} \int_{k^{\prime}-\Delta / 2}^{k^{\prime}+\Delta / 2} k_{3} d k_{3} \int d \phi_{2} d \phi_{3} \frac{d^{2} N^{(2)}}{d^{2} k_{2} d^{2} k_{3}}}
$$

- only the correlated part in the numerator \& correlated and uncorrelated parts in the denominator.
- Angular integrations + integrations over the transverse momenta within finite width bins!
- Assume: $k \gg \Delta, k^{\prime} \gg \Delta, \Delta \sim Q_{s}$ and $\lambda=1 / 25$.
$\bullet v_{2}^{2}$ is multiplied by the factor $\left(N_{c}^{2}-1\right) S_{\perp} Q_{s}^{2}$ in order to exhibit universal features of the result applicable to any target. For p-Pb or p-Au: $\left(N_{c}^{2}-1\right) S_{\perp} Q_{s}^{2} \sim 200$.

Momentum dependent second flow harmonic: v_{2}^{2}

In momentum space: \quad width of the BE correlations $\sim Q_{s} \quad \& \quad$ width of the HBT correlations $\ll Q_{s}$

- BE dominated regime:
very weak dependence on k.
$\Rightarrow B E$ cont. \& (Single inc.) ${ }^{2}$ scale with the same power of momentum.
- $\mathrm{BE}+\mathrm{HBT}$ regime:

HBT $\gg \mathrm{BE}$ contribution.
v_{2} is rising towards smaller values of k.

sharp transition of v_{2} as a function of Δ.
$\Delta / Q_{s}<0.5 \rightarrow \mathrm{BE}$ dominated regime.
$\Delta / Q_{s} \sim 0.5 \rightarrow$ HBT starts contributing.
$B E+H B T$ regime: HBT overwhelmingly dominates!

Correlated 3-gluon spectrum

3-gluon spectrum: upon integration over k_{1}, q_{1}, q_{2} and q_{3}, again two types of terms arise:
Bose enhancement type of contributions: $\left(X_{1}, X_{3}\right.$ and $\left.X_{4}\right)$

$$
\begin{aligned}
X_{1}= & \frac{1}{2} \alpha_{s}^{3}(4 \pi)^{6}\left(N_{c}^{2}-1\right) \mu^{6} S_{\perp} e^{-\left(k_{2}-k_{3}\right)^{2} / 2 Q_{s}^{2}} \frac{1}{k_{2}^{4}} \\
\times\{ & \left(\frac{1}{2}+Q_{s}^{2}\left[\frac{1}{k_{2}^{2}}+\frac{2^{2}}{\left(k_{2}+k_{3}\right)^{2}}\right]+Q_{s}^{4}\left[\frac{3}{k_{2}^{4}}+\frac{2!}{k_{2}^{2}} \frac{2^{2}}{\left(k_{2}+k_{3}\right)^{2}}+\frac{2^{4}}{\left(k_{2}+k_{3}\right)^{4}}\right]\right) \frac{1}{k_{2}^{2} k_{3}^{2}} \frac{\left(k_{2}-k_{3}\right)^{4}}{\left(k_{2}+k_{3}\right)^{4}} \\
& \left.+Q_{s}^{4} \frac{2^{6}}{\left(k_{2}+k_{3}\right)^{8}}\left[1+\left(k_{2}^{i}-k_{3}^{i}\right)\left(\frac{k_{2}^{i}}{k_{2}^{2}}-\frac{k_{3}^{i}}{k_{3}^{2}}\right)\right]\right\} .
\end{aligned}
$$

HBT type of contributions: $\left(X_{2}\right.$ and $\left.X_{5}\right)$

$$
X_{2}=\alpha_{s}^{3} \frac{1}{2}(4 \pi)^{7}\left(N_{c}^{2}-1\right) \mu^{6} S_{\perp}\left[\delta^{(2)}\left(k_{2}+k_{3}\right)+\delta^{(2)}\left(k_{2}-k_{3}\right)\right] \frac{1}{4} \frac{Q_{s}^{6}}{k_{2}^{12}}
$$

$\mathcal{O}_{N, v_{2}}$: these terms are ready to be plugged in $\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \int d^{2} k_{1} \frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X}$.
in addition to the angular integrations, we also integrate over bins of width Δ for the two momenta k_{2} and k_{3} :

$$
\left.\left.\frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X} \rightarrow \int_{k-\Delta / 2}^{k+\Delta / 2} k_{2} d k_{2} \int_{k^{\prime}-\Delta / 2}^{k^{\prime}+\Delta / 2} k_{3} d k_{3} \frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X}
$$

v_{2} and total multiplicity correlations

$$
\begin{array}{cccc}
\text { non-overlapping bins } & & & \text { overlapping bins } \\
\Delta<\left|k-k^{\prime}\right| & \rightarrow & \Delta \approx\left|k-k^{\prime}\right| & \rightarrow \\
\text { HBT starts to contribute } & & \Delta>\left|k-k^{\prime}\right| \\
\text { only BE contribution } & & \text { BE }+ \text { HBT contribution }
\end{array}
$$

non-overlapping bins: (no HBT contribution to v_{2}) overlapping bins: (v_{2} is dominated by HBT)
$\left.\mathcal{O}_{N, v_{2}}\right|_{H B T}$ is much weaker than $\left.\mathcal{O}_{N, v_{2}}\right|_{B E}$.

- $\mathcal{O}_{N, v_{2}}$ is a decreasing funct. of k.
(N is dominated by soft gluons, correlations we are looking has large k already in the incoming w.f.)

sharp transition of $\mathcal{O}_{N, v_{2}}$ as a function of Δ.
$\Delta / Q_{s}<0.5 \rightarrow$ BE dominated regime: correlation is sizable.
$\Delta / Q_{s} \sim 0.5 \rightarrow$ HBT starts contributing.
$\Delta / Q_{s}>0.5 \rightarrow \mathrm{BE}+\mathrm{HBT}$ regime:
correlation drops by factor of 30 to 50 !

The transition behavior in $\mathcal{O}_{N, v_{2}}$ is opposite to that of v_{2}.

Remarks

non-overlapping bins: $\Delta / Q_{s}<0.5-v_{2}$ is small \& sizable correlation between N and v_{2} (No HBT contribution)
non-overlapping bins: $\Delta / Q_{s}>0.5-v_{2}$ is large \& negligable correlation between N and v_{2} (HBT start contributing)

$$
\mathcal{O}_{N, v_{2}}=\frac{\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \int d^{2} k_{1} \frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{x}}{\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \frac{d N^{(2)}}{d^{2} k_{2} d^{2} k_{3}}\right|_{Q} \int d^{2} k_{1} \frac{d N^{(1)}}{d^{2} k_{1}}}
$$

conclusion:

- $\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \int d^{2} k_{1} \frac{d N^{(3)}}{d^{2} k_{1} d^{2} k_{2} d^{2} k_{3}}\right|_{X}$ is a smooth function of Δ.
- the drop in $\mathcal{O}_{N, v_{2}}$ is driven entirely by the sharp rise $\left.\int d \phi_{2} d \phi_{3} e^{i 2\left(\phi_{2}-\phi_{3}\right)} \frac{d N^{(2)}}{d^{2} k_{2} d^{2} k_{3}}\right|_{Q}$
- We have computed v_{2} \& correlations of v_{2} with total multiplicity in the dilute-dense CGC framework.
- Our results are valid at large N_{c} and large transverse momentum.
- Correlations of v_{2} and total multiplicity is very small and consistent with the data.
(Disclaimer: we do not attempt to describe the data, this is just a qualitative study of the quantum statistics on correlations.)
- We observe a distinct behavior of both v_{2} \& correlations v_{2} and total multiplicity as a function of the transverse momentum bin Δ due to HBT contribution.

