Relativistic corrections to the vector meson light front wave function

Jani Penttala

In collaboration with Tuomas Lappi and Heikki Mäntysaari

Phys. Rev. D 102, 054020 (2020)

University of Jyväskylä

January 13, 2021

Outline

Motivation

• Exclusive vector meson production

Output Content of C

- Relativistic corrections in the rest frame
- Going from rest frame to light front
- Operation Phenomenology

Exclusive vector meson production in DIS

- Dipole amplitude from the IPsat parametrization, fitted HERA data [1804.05311]
- $z = k^+/P^+$, quark's fraction of the meson's momentum
- $R_g^2(1 + \beta^2)$ = phenomenological corrections (roughly constant)

•
$$x_{\mathbb{P}} = \frac{M_V^2 + Q^2 - t}{W^2 + Q^2 - m_N^2}$$
 • Q^2 = photon virtuality • W^2 = invariant mass of the γ^* -nucleon system

Photon-meson overlap

- Production depends on $\sum_{h\bar{h}} \Psi^{\lambda*}_{\gamma,h\bar{h}} \Psi^{\lambda}_{V,h\bar{h}}$
 - *h* and \bar{h} = helicities of the quark and antiquark
- From light cone perturbation theory:

$$\begin{split} \Psi_{\gamma,h\bar{h}}^{\lambda=0}(\mathbf{r},z) &= -e_{f}e\sqrt{N_{c}}\delta_{h,-\bar{h}}2Qz(1-z)\frac{K_{0}(\epsilon|\mathbf{r}|)}{2\pi}\\ \Psi_{\gamma,h\bar{h}}^{\lambda=\pm1}(\mathbf{r},z) &= -e_{f}e\sqrt{2N_{c}}\left[\pm ie^{\pm i\theta_{r}}\frac{\epsilon K_{1}(\epsilon|\mathbf{r}|)}{2\pi}(z\delta_{h\pm}\delta_{\bar{h}\mp} - (1-z)\delta_{h\mp}\delta_{\bar{h}\pm}) + m\frac{K_{0}(\epsilon|\mathbf{r}|)}{2\pi}\delta_{h\pm}\delta_{\bar{h}\pm}\right]\\ \epsilon &= \sqrt{z(1-z)Q^{2} + m^{2}} \end{split}$$

- Vector meson wave function nonperturbative
- Consider J/ψ production
 - A nonrelativistic system one can try $\Psi_{{
 m J}/\psi}(ec{k})\sim \delta^{(3)}(ec{k}) \quad \Rightarrow \quad \Psi_{{
 m J}/\psi}({f r},z)\sim \delta(z-1/2)$
 - $\bullet\,$ However, relativistic corrections might be important as $\langle v^2 \rangle \approx 0.3!$

- NRQCD: An effective field theory for describing nonrelativistic quark-antiquark systems [hep-ph/9407339]
- NRQCD describes particle decay and production in terms of universal long-distance matrix elements (LDMEs) and perturbative hard factors

$$\Gamma(\mathrm{J}/\psi \to e^-e^+) = \frac{2 \operatorname{Im} f_1({}^3S_1)}{m_c^2} \langle \mathrm{J}/\psi | \mathcal{O}_1({}^3S_1) | \mathrm{J}/\psi \rangle + \frac{2 \operatorname{Im} g_1({}^3S_1)}{m_c^4} \langle \mathrm{J}/\psi | \mathcal{P}_1({}^3S_1) | \mathrm{J}/\psi \rangle + \mathcal{O}(v^3)$$

• Relation to the rest frame wave function:

$$\langle \mathcal{O}_1(^3S_1)
angle \propto |\phi(0)|^2 \qquad \qquad \langle \mathcal{P}_1(^3S_1)
angle \propto - {\sf Re}[\phi(0)^*
abla^2\phi(0)]$$

• For J/ψ , LDMEs have been determined by matching to decay widths [0710.0994]

NRQCD-motivated wave function

- Wave function in rest-frame
 - In terms of spin and 3-position $\vec{r} = (x^1, x^2, x^3)$
 - J^{PC} conservation \Rightarrow a combination of S and D waves
- From NRQCD: *D* wave velocity suppressed \Rightarrow consider only *S* wave $\Rightarrow \Psi_{s\bar{s}}^{\lambda}(\vec{r}) = \frac{1}{\sqrt{2}} \xi_{s}^{\dagger} \epsilon^{\lambda} \cdot \sigma \chi_{\bar{s}} \phi(r)$
 - $\epsilon^{\lambda} =$ the polarization vector of ${\rm J}/\psi$
 - ξ_s and $\chi_{ar{s}} =$ quark and antiquark spinors with spins s and $ar{s}$
- Our approach for the scalar part $\phi(r)$: expand around the origin

$$\phi(r) = \underbrace{A}_{\mathcal{O}(v^0)} + \underbrace{Br^2}_{\mathcal{O}(v^2)}$$

• Use the LDMEs to determine the coefficients A and B

- This the wave function in the rest frame we need the wave function in the light front
- Three major differences between the light front and the rest frame
 - Optimizion of the wave function
 - Oordinate system
 - Spinor basis

From rest frame to light front: Definition of the wave function

• Light front: loop corrections defined as part of the wave function

$$\Gamma(\mathbf{J}/\psi \to e^- e^+) = \frac{16\pi e_f^2 \alpha}{M_V^2} \left(1 - 2C_F \frac{\alpha_s}{\pi}\right)^2 |\Psi_{\mathsf{RF}}(\vec{r} = 0)|^2$$
$$= \frac{16\pi e_f^2 \alpha}{M_V^2} \left|\int_0^1 \mathrm{d}z \Psi_{\mathsf{LF}}(\mathbf{r} = 0, z)\right|^2$$
$$\Rightarrow \mathcal{W}_{\mathsf{F}} = -\left(1 - 2C_F \frac{\alpha_s}{\pi}\right) \mathcal{W}_{\mathsf{F}}.$$

A loop correction to LFWF [1911.01136]

$$\Rightarrow \Psi_{\mathsf{LF}} = \left(1 - 2C_{\mathsf{F}}rac{lpha_{\mathrm{s}}}{\pi}
ight)\Psi_{\mathsf{RF}}$$

• Different coordinates: \vec{r} in rest frame vs (\mathbf{r}, z) in light front

$$\vec{r} \xrightarrow{\text{3D Fourier}} \vec{k} \xrightarrow{k^3 \to z} (\mathbf{k}, z) \xrightarrow{\text{2D Fourier}} (\mathbf{r}, z)$$

- Relation between k^3 and $z = k^+/P^+$, $P^+ = M_V/\sqrt{2}$:
 - Assuming quarks on mass-shell, $k^0 = \sqrt{m_c^2 + k^2}$ $\Rightarrow k^3 = M(z - 1/2)$, $M^2 = \frac{k^2 + m_c^2}{z(1-z)}$ is the invariant mass of the quark-antiquark pair
- Coordinate transformation from probability conservation:

$$\frac{\mathrm{d}^3\vec{k}}{(2\pi)^3}\psi(\vec{k})\phi(\vec{k})^* = \frac{\mathrm{d}^2\mathbf{k}\mathrm{d}z}{(2\pi)^24\pi}\psi(\mathbf{k},z)\phi(\mathbf{k},z)^*$$
 for all wave functions ψ and ϕ

From rest frame to light front: Spinor basis

- Different spinors in rest frame and light front:
 - Rest frame: spin states u_s (Bjorken-Drell)
 - Light front: light cone helicity states u_h (Lepage-Brodsky)
- Define the Melosh rotation:

 $R^{sh}(\mathbf{k},z) = rac{1}{2m_c}ar{u}_s(\mathbf{k},z)u_h(\mathbf{k},z)$

• Change of basis: $u_h = \sum_s R^{sh} u_s$

$$\Rightarrow \Psi^{\lambda}_{har{h}}(\mathbf{k},z) = \ \sum_{sar{s}} R^{*sh}(\mathbf{k},z) R^{*ar{s}ar{h}}(-\mathbf{k},1-z) \Psi^{\lambda}_{sar{s}}(\mathbf{k},z)$$

$$u_{s=\uparrow} = \frac{1}{\sqrt{2m_c(E+m_c)}} \begin{pmatrix} E+m_c \\ 0 \\ k^3 \\ k^1+ik^2 \end{pmatrix}$$

,

$$u_{h=+} = \frac{1}{\sqrt{2m_c(E+k^3)}} \begin{pmatrix} E+m_c+k^3\\k^1+ik^2\\E-m_c+k^3\\k^1+ik^2 \end{pmatrix}$$

NRQCD expansion ansatz

• Taking all these differences into account, we get the NRQCD expansion light front wave function

$$\begin{split} \Psi_{+-}^{\lambda=0}(\mathbf{r},z) &= \Psi_{-+}^{\lambda=0}(\mathbf{r},z) = \frac{\pi\sqrt{2}}{\sqrt{m_c}} \bigg[A\delta(z-1/2) + \frac{B}{m_c^2} \bigg(\bigg(\frac{5}{2} + \mathbf{r}^2 m_c^2\bigg) \,\delta(z-1/2) - \frac{1}{4} \partial_z^2 \delta(z-1/2) \bigg) \bigg] \\ \Psi_{++}^{\lambda=1}(\mathbf{r},z) &= \Psi_{--}^{\lambda=-1}(\mathbf{r},z) = \frac{2\pi}{\sqrt{m_c}} \bigg[A\delta(z-1/2) + \frac{B}{m_c^2} \bigg(\bigg(\frac{7}{2} + \mathbf{r}^2 m_c^2\bigg) \,\delta(z-1/2) - \frac{1}{4} \partial_z^2 \delta(z-1/2) \bigg) \bigg] \\ \Psi_{+-}^{\lambda=1}(\mathbf{r},z) &= -\Psi_{-+}^{\lambda=1}(\mathbf{r},z) = \big(\Psi_{-+}^{\lambda=-1}(\mathbf{r},z)\big)^* = \big(-\Psi_{+-}^{\lambda=-1}(\mathbf{r},z)\big)^* = -\frac{2\pi i}{m_c^{3/2}} B\delta(z-1/2)(r_1+ir_2) \\ \Psi_{--}^{\lambda=1}(\mathbf{r},z) &= \Psi_{++}^{\lambda=-1}(\mathbf{r},z) = \Psi_{++}^{\lambda=0}(\mathbf{r},z) = \Psi_{--}^{\lambda=0}(\mathbf{r},z) = 0 \end{split}$$

- Here $A=0.213~{
 m GeV}^{3/2}$ and $B=-0.0157~{
 m GeV}^{7/2}$
- For comparison: try also the fully nonrelativistic wave function $\phi(r) = A'$
- A' from the decay width: $A' = 0.211 \text{ GeV}^{3/2}$ (and B' = 0)
- Gives us the Delta LFWF: corresponds to $\Psi \sim \delta(z-1/2)\delta^2({\bf k})$ in the momentum space

- *Delta* = fully nonrelativistic
- *NRQCD* expansion = v^2 -corrections included

Two phenomenological wave functions:

• Boosted gaussian = The meson has the same helicity structure as the photon [hep-ph/0606272]

 \Rightarrow the wave function has both S and D waves

• BLFQ = Wave functions determined from the mass spectrum of charmonium [1704.06968]

Photon-meson overlaps

Overlap $r/2 \int dz (\Psi^*_{\gamma} \Psi_{\mathrm{J}/\psi})$ [GeV]

- Relativistic corrections $\sim -{\bf r}^2$
 - Brings the wf closer to Boosted gaussian
- Large r: NRQCD, BLFQ and Boosted gaussian similar
- Note: cross section \sim

overlap \otimes dipole amplitude

 \Rightarrow larger r behavior more important for cross sections

Cross sections: Total

HERA data from [hep-ex/0510016] and [hep-ex/0404008]

- Focus on the Q^2 dependence
 - Overlap peak at ${\bf r} \sim 1/({\it Q}^2 + {\it M}_{{\rm J}/\psi}^2)$
 - Small Q²: larger effect from relativistic correction -r²
- Q² dependence of Delta in disagreement with the data
- Other wave functions describe the data well
- Similar effects also in the ratio σ_L/σ_T (see backup)

Nuclear suppression in EIC kinematics

- Heavy ion vs proton in the initial state
 - Identically 1 without non-linear effects
 - \Rightarrow Measures nuclear suppression
- The wave function effects might be expected to cancel
 - At low Q^2 this does not happen!
 - Important to use a realistic wave function when comparing to EIC data

Summary

- We included the relativistic corrections at order v^2 to the wave function
- Wave function coefficients determined from decay width using NRQCD
 - Two independent parameters (compare to Boosted gaussian: only one independent parameter)
- $\bullet\,$ Relativistic corrections found to be important for J/ψ production
 - Similar results as with Boosted gaussian and BLFQ
 - Needed for good agreement with HERA data
- The wave function doesn't completely cancel in the nuclear suppression need to take relativistic effects into account
- Future work: NLO calculations on the way

HERA data from [hep-ex/0510016] and [hep-ex/0404008]

- Overall normalization cancels
- Relativistic corrections bring the ratio closer to the data

$$r\sum_{h\bar{h}}\int_{0}^{2\pi}\mathrm{d}\theta_{r}\int_{0}^{1}\frac{\mathrm{d}z}{4\pi}(\Psi_{\mathrm{J}/\psi}^{T})^{*}\Psi_{\gamma}^{L}e^{i(z-1/2)\mathbf{r}\cdot\mathbf{\Delta}} = \frac{ree_{f}Q}{2}\sqrt{\frac{N_{c}}{2m_{c,NR}}}\left[AK_{0}(r\bar{\epsilon}) + \frac{B}{m_{c,NR}^{2}}\left(\frac{9}{2}K_{0}(r\bar{\epsilon}) + m_{c,NR}^{2}r^{2}K_{0}(r\bar{\epsilon}) - \frac{Q^{2}r}{4\bar{\epsilon}}K_{1}(r\bar{\epsilon}) + \frac{1}{4}\Delta^{2}r^{2}K_{0}(r\bar{\epsilon})\right)\right]$$

$$r\sum_{h\bar{h}}\int_{0}^{2\pi}\mathrm{d}\theta_{r}\int_{0}^{1}\frac{\mathrm{d}z}{4\pi}(\Psi_{\mathrm{J}/\psi}^{T})^{*}\Psi_{\gamma}^{T}e^{i(z-1/2)\mathbf{r}\cdot\mathbf{\Delta}} = ree_{f}\sqrt{\frac{N_{c}m_{c,NR}}{2}}\left[AK_{0}(r\bar{\epsilon}) + \frac{B}{m_{c,NR}^{2}}\left(\frac{7}{2}K_{0}(r\bar{\epsilon}) + m_{c,NR}^{2}r^{2}K_{0}(r\bar{\epsilon}) - \frac{r}{2\bar{\epsilon}}(Q^{2}+2m_{c,NR}^{2})K_{1}(r\bar{\epsilon}) + \frac{1}{4}\Delta^{2}r^{2}K_{0}(r\bar{\epsilon})\right)\right]$$

Backup - Overlap comparison

Overlap normalized by delta-overlap

Backup - Decomposition into S- and D-waves

Backup - Decomposition into S- and D-waves

