Finite Nc Corrections

 in the NLO BK EquationLappi, Mäntysaari, A. R. [Phys. Rev. D 102 074027] (2020)

Initial Stages 2021 (Online)

Andrecia Ramnath
13 January 2021

JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

Outline

- Preliminaries

- Colour Glass Condensate
- Leading order (LO) BK (Balitsky-Kovchegov) equation
- Gaussian approximation for 2-point correlator
- Next-to-leading (NLO) BK equation
- Finite $N_{\mathrm{c}} \Longrightarrow$ 6-point correlators
- Gaussian approximation parametrisation
- Numerical results
- 6-point correlators in line configuration
- NLO BK evolution finite vs large N_{c}

Colour Glass Condensate

- Effective field theory at small virtuality Q^{2}, small $x_{\text {Bj }}$
- Wilson lines are basic building blocks

Marquet, Weigert [Nucl.Phys. A843 (2010) 68-97], Blaizot, Gelis, Venugopalan [Nucl.Phys. A743 (2004) 57-91]

$$
U_{\boldsymbol{x}}^{\dagger}:=P \exp \left\{i g \int_{x^{+}} \alpha_{\boldsymbol{x}}^{a}\left(x^{+}\right) t^{a}\right\} \sim
$$

- Enter cross sections explicitly, e.g.

$$
\begin{gathered}
\sigma_{\operatorname{DIS}}\left(Y, Q^{2}\right)=2 \int_{r} \int_{0}^{1} d \alpha\left|\Psi\left(\alpha, r^{2}, Q^{2}\right)\right|^{2} \int_{b}\left\langle 1-S_{x, y}^{(2)}\right\rangle \\
S_{x, y}^{(2)}:=\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{U_{\boldsymbol{x}} U_{y}^{\dagger}\right\} \sim
\end{gathered}
$$

\Longrightarrow need to calculate and understand behaviour of correlators

LO BK Equation

- Evolution in rapidity of correlators governed by Balitsky Hierarchy (\Longleftrightarrow JIMWLK equation)
- Infinite set of equations $-\mathcal{O}(n)$ equation needs input from $\mathcal{O}(n+1)$
- First equation is Balitsky equation for $S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}$

> Balitsky [Phys. Rev. D60 (1999) 014020], Kovchegov [Phys. Rev. D60 (1999) 034008], Kovchegov [Phys. Rev. D61 (2000)]

$$
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=\frac{\alpha_{s}}{\pi^{2}} \int_{\boldsymbol{z}} \tilde{\mathcal{K}}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{y}}\left(\left\langle\frac{1}{N_{\mathrm{C}}} U_{\boldsymbol{z}}^{a b} \operatorname{tr}\left\{t^{a} U_{\boldsymbol{x}} t^{b} U_{\boldsymbol{y}}^{\dagger}\right\}\right\rangle-C_{f}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle\right)
$$

- Use Fierz identity for 3-point correlator $\Longrightarrow 4$ point correlators
- Take large- N_{C} limit: expectation values factorise $\langle\operatorname{tr}\} \operatorname{tr}\}\rangle \rightarrow\langle\operatorname{tr}\}\rangle\langle\operatorname{tr}\}\rangle$
$\Longrightarrow \mathrm{BK}$ equation at LO

$$
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=\frac{\alpha_{s}}{\pi^{2}} \frac{N_{c}}{2} \int_{\boldsymbol{z}} \tilde{\mathcal{K}}_{\boldsymbol{x} \boldsymbol{z} \boldsymbol{y}}\left(\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)}\right\rangle\left\langle S_{\boldsymbol{z}, \boldsymbol{y}}^{(2)}\right\rangle-\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle\right)
$$

Gaussian Approximation

- Truncate infinite hierarchy of evolution equations
- Parametrise correlators according to

$$
\partial_{Y}\langle\hat{\mathcal{O}}\rangle:=-\frac{1}{2} \int_{\boldsymbol{u} \boldsymbol{v}} G_{\boldsymbol{u} \boldsymbol{v}}(Y) L_{\boldsymbol{u}}^{a} L_{\boldsymbol{v}}^{a} \hat{\mathcal{O}}
$$

Iancu, Leonidov, McLerran

 [Nucl.Phys. A692 (2001) 583-645] Fujii [Nucl.Phys. A709 (2002) 236-250]Dumitru, Dusling, Gelis, JalilianMarian, Lappi, Venugopalan [Phys.Lett. B697 (2011) 21-25] Dusling, Mace, Venugopalan [Phys.Rev. D97 (2018) no.1, 016014]

- Operate on \mathcal{O} with Lie derivatives $L_{\boldsymbol{u}}^{a} L_{\boldsymbol{v}}^{a} \sim$ add gluon emission/absorption vertices
- E.g. 2-point correlator

$$
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=-\frac{1}{2} \int_{\boldsymbol{u} \boldsymbol{v}} G_{\boldsymbol{u} \boldsymbol{v}}(Y) L_{\boldsymbol{u}}^{a} L_{\boldsymbol{v}}^{a} S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}
$$

NLO BK Equation

- Repeat this process at NLO
- BK equation at NLO

Balitsky, Chirilli [Nucl. Phys. B822:45-87 (2009)]

$$
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=\frac{\alpha_{\mathrm{s}} N_{\mathrm{c}}}{2 \pi^{2}} \int_{\boldsymbol{z}} K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle+\frac{\alpha_{\mathrm{s}}^{2} N_{\mathrm{c}}^{2}}{16 \pi^{4}} \int_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}\left(K_{2,1}\left\langle D_{2,1}\right\rangle+K_{2,2}\left\langle D_{2,2}\right\rangle\right)+\mathcal{O}\left(n_{f}\right)
$$

- Correlators are more complicated than at LO:

$$
\begin{aligned}
\left\langle D_{1}\right\rangle & =\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{y}}^{(2)}\right\rangle-\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle \\
\left\langle D_{2,1}\right\rangle & =\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle-\frac{1}{N_{\mathrm{C}}^{2}}\left\langle S_{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{z}^{\prime}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(6)}\right\rangle-\left(z^{\prime} \rightarrow z\right) \\
\left\langle D_{2,2}\right\rangle & =\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle-\left(z^{\prime} \rightarrow z\right)
\end{aligned}
$$

- Can use large- N_{c} approximation, e.g. $\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle \rightarrow\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)}\right\rangle\left\langle S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)}\right\rangle\left\langle S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle$

Correlators at Finite N_{c}

- NLO BK requires 6-point correlators

with 2 repeated coordinates (only 4 unique coordinates)
- Apply Gaussian approximation $\partial_{Y}\langle\hat{\mathcal{O}}\rangle:=-\frac{1}{2} \int_{u v} G_{u v}(Y) L_{u}^{a} L_{v}^{a} \hat{\mathcal{O}}$
- Now $\hat{\mathcal{O}}$ is 6×6 matrix, because 6 ways to form multiplets from

- Write matrix equation for Gaussian approximation $\partial_{Y}\langle\mathcal{A}(Y)\rangle=-\mathcal{M}(Y) \mathcal{A}(Y)$
- Exponentiate to solve differential equation (as for 2-point correlator $\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle=e^{-C_{\mathfrak{F}} \mathcal{G}_{\boldsymbol{x} \boldsymbol{y}}}$)

Naive Solution

- STEP 1: Choose orthonormal basis for operator

Naive choice is simplest orthonormal set

- STEP 2: Form "correlator matrix" $\mathcal{A}(Y)$
- STEP 3: Construct "transition matrix" $\mathcal{M}(Y)$ by taking sum of all possible diagrams with 1 gluon added
- STEP 4: Solve $\partial_{Y}\langle\mathcal{A}(Y)\rangle=-\mathcal{M}(Y) \mathcal{A}(Y) \Longrightarrow$ exponentiate 6×6 matrix!

Better Solution

- Exploit redundancy in coordinates in $\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle$ and $\left\langle S_{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{z}^{\prime}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(6)}\right\rangle \Longrightarrow$ STEP 1: Better basis

$$
\begin{aligned}
& \frac{1}{\sqrt{2 N_{\mathrm{C}} d_{\mathrm{A}}}}[-\lambda+\partial] \\
& \frac{1}{\sqrt{N_{\mathrm{C}} d_{\mathrm{A}}}}\left[-j+\frac{1}{N_{\mathrm{C}}}, j\right] \\
& \left.\frac{1}{\sqrt{2 N_{\mathrm{C}} d_{\mathrm{A}}}}[-\hat{y}+\lambda)\right] \\
& \left.\left.\frac{1}{\sqrt{2 N_{\mathrm{C}} d_{\mathrm{A}}}}[-j-\lambda)+\frac{2}{N_{\mathrm{C}}}, \dot{y}\right)\right] \\
& \frac{1}{\sqrt{N_{\mathrm{C}}^{3}}},
\end{aligned}
$$

Matrix Equation in New Basis

- STEP 2: Form correlator matrix $\mathcal{A}(Y)$
- STEP 3: Construct transition matrix $\mathcal{M}(Y)$: clever basis choice \Longrightarrow block diagonalisation

$$
\lim _{\substack{u \rightarrow z^{\prime} \\
v \rightarrow z^{\prime}}} \mathcal{M}(Y)=\left(\begin{array}{ccc}
\mathcal{M}_{1}^{(3 \times 3)}(Y) & 0 & 0 \\
0 & \mathcal{M}_{2}^{(2 \times 2)}(Y) & 0 \\
0 & 0 & \mathcal{M}_{3}^{(1 \times 1)}(Y)
\end{array}\right)
$$

- STEP 4: Solve $\partial_{Y}\langle\mathcal{A}(Y)\rangle=-\mathcal{M}(Y) \mathcal{A}(Y) \Longrightarrow$ no long need to exponentiate 6×6 matrix
- 1×1 equation: $\mathcal{M}_{3}(Y)=C_{F} \mathcal{G}_{\boldsymbol{x}_{3}, y_{2}}$ gives 2-point correlator (as seen before)
- 2×2 equation: $\mathcal{M}_{2}(Y)$ gives known 4-point correlator

$$
\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{y}}^{(2)}\right\rangle=\frac{1}{N_{\mathrm{C}}^{2}} e^{-C_{\mathrm{F}} \mathcal{G}_{\boldsymbol{x}, \boldsymbol{y}}}+\frac{2 C_{\mathrm{F}}}{N_{\mathrm{c}}} e^{-C_{\mathrm{F}} \mathcal{G}_{\boldsymbol{x}, \boldsymbol{y}}} e^{-\frac{N_{\mathrm{c}}}{2}\left(\mathcal{G}_{\boldsymbol{x}, \boldsymbol{z}}+\mathcal{G}_{\boldsymbol{y}, \boldsymbol{z}}-\mathcal{G}_{\boldsymbol{x}, \boldsymbol{y}}\right)}
$$

- 3×3 equation: exponentiate matrix $\mathcal{M}_{1}(Y)$ - doable analytically

3×3 Equation Solution

- Exponentiation of $\mathcal{M}_{1}(Y)$ gives

$$
\mathcal{A}_{1}(Y)=\left(\begin{array}{ccc}
\sum_{i=1}^{3} \frac{m_{11}}{d}\left(z_{i}\right) & -\sqrt{C_{\mathrm{d}} N_{\mathrm{C}}} \Gamma_{2} \sum_{i=1}^{3} \frac{m_{12}}{d}\left(z_{i}\right) & -2 \sqrt{2 C_{\mathrm{d}} N_{\mathrm{C}}} \Gamma_{2}^{2} \sum_{i=1}^{3} \frac{m_{13}}{d}\left(z_{i}\right) \\
\ldots & \sum_{i=1}^{3} \frac{m_{22}}{d}\left(z_{i}\right) & 2 \sqrt{2} \Gamma_{2} \sum_{i=1}^{3} \frac{m_{23}}{d}\left(z_{i}\right) \\
\cdots & \cdots & \sum_{i=1}^{3} \frac{m_{33}}{d}\left(z_{i}\right)
\end{array}\right)
$$

- Roots z and functions of roots $m_{i j}$ and d are simple polynomials in \mathcal{G}

6-point Correlators for NLO BK

- Final analytical solution: two required 6-point correlators are

$$
\begin{aligned}
\lim _{\substack{u \rightarrow \boldsymbol{z} \\
\boldsymbol{v} \rightarrow \boldsymbol{z}^{\prime}}}\left\langle\frac{1}{N_{\mathrm{C}}}\right\rangle= & \left\langle\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{U_{\boldsymbol{z}}^{\dagger} U_{\boldsymbol{z}^{\prime}} U_{\boldsymbol{x}}^{\dagger} U_{\boldsymbol{z}} U_{\boldsymbol{z}^{\prime}}^{\dagger} U_{\boldsymbol{y}}\right\}\right\rangle \\
= & \frac{1}{N_{\mathrm{C}}{ }^{2}} e^{-C_{\mathrm{F}} \mathcal{G}_{\boldsymbol{x}, \boldsymbol{y}}}+\frac{d_{\mathrm{A}}}{N_{\mathrm{C}}{ }^{2}} e^{\frac{1}{2 N_{\mathrm{C}}} \mathcal{G}_{\boldsymbol{x}, \boldsymbol{y}}\left(e^{-\frac{N_{\mathrm{C}}}{2}\left(\mathcal{G}_{\boldsymbol{z}, \boldsymbol{x}}+\mathcal{G}_{\boldsymbol{z}, \boldsymbol{y}}\right)}+e^{-\frac{N_{\mathrm{c}}}{2}\left(\mathcal{G}_{\boldsymbol{z}^{\prime}, \boldsymbol{x}}+\mathcal{G}_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}\right)}\right)} \\
& +C_{\mathrm{F}} C_{\mathrm{d}} \mathcal{A}_{1}^{(11)}-N_{\mathrm{C}} C_{\mathrm{F}} \mathcal{A}_{1}^{(22)}-C_{\mathrm{F}} \sqrt{8 N_{\mathrm{C}}{ }^{3} C_{\mathrm{d}}} \mathcal{A}_{1}^{(13)}+2 N_{\mathrm{C}} C_{\mathrm{F}} \mathcal{A}_{1}^{(33)}
\end{aligned}
$$

$$
\begin{aligned}
\lim _{\substack{u \rightarrow z^{\prime} \\
v \rightarrow \boldsymbol{z}^{\prime}}}\left\langle\frac{1}{N_{\mathrm{c}}{ }^{3}}\right\rangle & =\left\langle\frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{U_{\boldsymbol{z}}^{\dagger} U_{\boldsymbol{z}^{\prime}}\right\} \frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{U_{\boldsymbol{z}^{\prime}}^{\dagger} U_{\boldsymbol{y}}\right\} \frac{1}{N_{\mathrm{c}}} \operatorname{tr}\left\{U_{\boldsymbol{x}}^{\dagger} U_{\boldsymbol{z}}\right\}\right\rangle \\
& \left.=\frac{1}{N_{\mathrm{c}}^{2}} \lim _{\substack{u \rightarrow z \\
v \rightarrow \boldsymbol{z}^{\prime}}}\left\langle\frac{1}{N_{\mathrm{c}}}\right\rangle\right\rangle-\frac{2 C_{\mathrm{F}} \sqrt{C_{\mathrm{c}}}}{\sqrt{N_{\mathrm{c}}{ }^{3}}} \mathcal{A}_{1}^{(12)}+\frac{2 C_{\mathrm{F}}}{N_{\mathrm{c}}} \mathcal{A}_{1}^{(22)}+\sqrt{8} N_{\mathrm{c}} C_{\mathrm{F}} \frac{1}{N_{\mathrm{c}}{ }^{3}} \mathcal{A}_{1}^{(23)}
\end{aligned}
$$

Numerical Results: Correlators in LO-like part of NLO BK Equation

Correlators for LO-like BK integrand for one particular typical configuration of coordinates

Recall BK equation:

$$
\begin{gathered}
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle \sim \int K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle+\text { NLO-like } \\
\left\langle D_{1}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{y}}^{(2)}\right\rangle-\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle
\end{gathered}
$$

Correlators in NLO-like part of NLO BK Equation

Correlators for NLO-like BK integrand for one particular typical configuration of coordinates

\rightarrow very small correction from including finite- N_{c} piece

Recall BK equation:

$$
\begin{array}{r}
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle \sim \int K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle \\
+\int K_{2,1}\left\langle D_{2,1}\right\rangle+\int K_{2,2}\left\langle D_{2,2}\right\rangle \\
\left\langle D_{2,1}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle \\
-\frac{1}{N_{\mathrm{c}}^{2}}\left\langle S_{\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{z}^{\prime}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(6)}\right\rangle-\left(z^{\prime} \rightarrow z\right) \\
\left\langle D_{2,2}\right\rangle=\left\langle S_{\boldsymbol{x}, \boldsymbol{z}}^{(2)} S_{\boldsymbol{z}, \boldsymbol{z}^{\prime}}^{(2)} S_{\boldsymbol{z}^{\prime}, \boldsymbol{y}}^{(2)}\right\rangle-\left(z^{\prime} \rightarrow z\right)
\end{array}
$$

NLO Integrand

One particular typical configuration of coordinates

Recall BK equation:

$$
\begin{aligned}
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle & \sim \int K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle \\
+\int K_{2,1}\left\langle D_{2,1}\right\rangle & +\int K_{2,2}\left\langle D_{2,2}\right\rangle
\end{aligned}
$$

Finite- vs Large- $N_{\mathrm{c}} \mathbf{d} N / \mathbf{d} y$

$$
\begin{gathered}
N_{\boldsymbol{x}, \boldsymbol{y}}:=1-S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)} \\
\partial_{Y}\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle \sim \int K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle \\
+\int\left(K_{2,1}\left\langle D_{2,1}\right\rangle+K_{2,2}\left\langle D_{2,2}\right\rangle\right)+\mathcal{O}\left(n_{f}\right)
\end{gathered}
$$

Finite- vs Large- N_{c} Difference in $\mathbf{d} N / \mathbf{d} y$

$$
N_{\boldsymbol{x}, \boldsymbol{y}}=1-\left\langle S_{\boldsymbol{x}, \boldsymbol{y}}^{(2)}\right\rangle
$$

LO means only $\sim \int K_{1}^{\mathrm{BC}}\left\langle D_{1}\right\rangle$
NLO means only $\int K_{2,1}\left\langle D_{2,1}\right\rangle+\int K_{2,2}\left\langle D_{2,2}\right\rangle$

Summary

- Studied high energy evolution of Wilson line correlators within CGC framework
- Infinite hierarchy of evolution equations can be truncated using Gaussian approximation to parametrise correlators
- NLO BK requires 6-point correlators
\rightarrow better basis choice leads to simplified calculation: 6×6 matrix equation block diagonalises in particular coincidence limits
- We have purely analytical parametrisations for correlators
- Used parametric equations for numerical studies of NLO BK and found very small difference between large- N_{C} and finite- N_{c} results
- Naive expectation before calculation: finite- N_{c} corrections at NLO are $\frac{1}{N_{\mathrm{c}}{ }^{2}} \sim \mathcal{O}(10 \%)$
\rightarrow but numerics show much smaller correction, $\sim \mathcal{O}(1 \%)$ (similar to LO-like case)

