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Introduction

With ultra-relativistic Heavy lon Collisions, nuclear matter in extreme conditions can
be produced and studied;

e In the last decades kinetic theory and hydrodynamics have been essential effective
models to understand the evolution of this system;
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The relativistic Boltzmann equation

e The main equation from kinetic theory is the relativistic Boltzmann
equation

prout, = Clf] = /dQ ) dP,WPP'HqCI'(fPfP’ — fofq'),

e Widely used simplification: Relaxation time
approximation (RTA) [Anderson & Witting, 1974],
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e Importance in HIC modelling: Conversion from fluid

d.o.f’s to particles (Cooper-Frye), thermalization of QCD
matter [Kamata et al, 2020], among other applications;
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Severe limitation of RTA
e RTA s inconsistent with the macroscopic conservation laws;

N = /dP p“f, %= /dP p*p“t,,
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Traditionally, it is assumed that 7, =cte and one defines (T, u*, ) so that the right-hand side is zero

e This happens because an essential property of the collision

term was lost:
Cin[Q)] = 0.

0] .
Qp : Microscopically Conserved Quantity In the present case: 1, p/



Our proposal

e TJo recover the lost properties, we propose schematically

Ciin o< —1 + z IQg,p>(Q?1,p|7

Projector in the subspace of
conserved quantities in an
orthogonal basis

Traditional RTA

e Our approximation to the rBE reads
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Let’s see the effects of the proposal on transport
coefficients of Relativistic Navier Stokes



Effects on transport coefficients

e Shear viscosity: resistance to deformation
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Nothing changes in comparison to traditional RTA
besides the energy dependence



Effects on transport coefficients I

e Particle diffusion viscosity
E\" -
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Traditional RTA New RTA



Effects on transport coefficients

e Bulk viscosity: resistance to expansion
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Final remarks and perspectives

RTA is an extremely important approximation to rBE, however it has some
severe limitations that require its reformulation;

We propose a new RTA which ensures the conservation laws, is consistent
with the 2nd law of thermodynamics (see exira slides) and makes it possible
to use alternative matching conditions;

Transport coefficients are computed and they depend drastically on the
energy dependence of 7 ;

The new RTA can be used in particlization models;

Prospective works include: generalizations for mixtures; transient dynamics
etc.



EXTRA SLIDES
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Non-equilibrium corrections

e Hydrodynamics: long wavelength/ long timescale effective theory.

mean free path

¢ Implementation: Chapman-Enskog expansion & v Emicro
[Chapman,1916], [Enskog, 1921] Lmacro typical macro

scale of the fluid
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e This method has its formalization in the theory of asymptotics;
e A similar method is used for WKB semiclassical expansion;
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Solution to Chapman-Enskog expansion
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The irreducible basis

e The basis {PY)(E,)p'#...p*8}, , is irreducible with respect to the little
group;

(m1  ope) — AP V1 LV A .- Symmetric and
¢ PHprEA vi..vgP P e aceless projector
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e Basis of microscopically conserved quantities
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Matching and frame conditions

In hydro the QCD EM-tensor/currents are effectively represented in terms of hydro fields (T, u*, a)
which must be defined out of equilibrium;

However, out of equilibrium, many different definitions of hydro fields can give the same EM-tensor,
which is the physical object [Kovtun, 2012],

EX.: Landau matching and frame conditions [Landau, 1959]:
/dP Exf, = ng, /dP Esfp =gg, 1,u’ =¢eu"

Moreover, recent studies on uniqueness and causality of first order hydro, e.g. [Bemfica et al, 2018;
Bemfica et al 2019] lead to the use of alternative matching conditions

N¥ = (ng + dn)u* + v* General
irreducible

THY = (eo + de)utu” — (Po + M)A + h*u” + W u# + 7H¥, decomposition
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Entropy production

e \We have shown that

OuS* = B(s0° — ks V*aV o + 2nsBo ™ > 0
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0

e It does not matter if one coefficient is negative, the sum will always be
non-negative

e For usual (Landau) matching conditions, {(dn) = {(de) = xk(h) =0
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