Using Machine Learning to Understand
the Properties of the QCD Critical Point

Debora Mroczek

In collaboration with Claudia Ratti (U. of Houston), Jacquelyn Noronha-Hostler (U. of lllinois Urbana-
Champaign), Morten Hjorth-Jensen (MSU), Paolo Parotto (Wuppertal), Ricardo Vilalta (U. of Houston)

Illinois Center for [ == '
Advanced Studies & ESVF
_ of the Universe COLLABORATION




Outline

1. The search for the QCD critical point
. Current understanding + missing pieces
II. 2D Equation of State with a critical point
IIl. Defining a machine learning problem

2. Machine learning and the active learning framework
. Preparing the data

II. Systematically comparing algorithm performance




*The QCD phase diagram: the one we don’t
know but love

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Early Uni
arly Universe — = STAR BES (net-p,Q)

Gluon —'=°STAR BEj_(net—K,A)

S‘ sma 1= = HADES +/ s=2.4 GeV
§ — — [WB] Chiral Transition
— O(up)

|_

Neutron Star Mergers

0. __Neutron Stars—

0 200 400 600 800 1000 1200 1400

Hp [MeV]

WB Phys.Rev.Lett. (2020); P. Alba et al Phys.Lett. (2014);

Bellwied et al arXiv:1805.00088; V. Dexheimer ariXiv:1708.08342;
Critelli et al, Phys.Rev. D96 (2017);

HADES Nature Phys. (2019); Nucl.Phys.A (2014)

. Known with high precision at pg=0
S. Borsanyi et al, JHEP (2018)

. Sign problem at finite pg
M. Troyer and U.J. Wiese, Phys. Rev. Lett. (2005)

— Challenges in interpreting
recent/future experimental results.

To-do: Changes to IC + hydro +
hadronization + transport are still
needed in the vicinity of a CP.

Starting point: EOS with CP at finite
baryon density matching Lattice at
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» Exploring the baryon dense regime
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R. Bellwied et al, Phys. Lett. B (2015).

* Few coefficients from lattice — indication that ug/T < 2 is disfavored
o No know|edge beyond CP (‘uB > Ugc ) A. Bazavov et al Phys. Rev. D (2017).




= QCD phase diagram with a critical point from
the 3D Ising model

Safe assumption: transition line is a

3D Ising Model: We can borrow the critical region from  parabola with curvature kK
a theory in the same universality class as QCD.
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' 1 \ K and Tq (T at which the transition line
e e crosses the T axis) — Estimates from Lattice

a, — Obtained from parabola

e pgc — Critical baryon chemical potential
Up to O(ug®: P. Parotto, M. Bluhm, DM et al. Phys. Rev. C (2020) Qgiff — Ang|e difference between the |5ing
axes

Linear map Ising — QCD requires 6 parameters:  , 5 _ Scaling parameters (size and shape

T-Tc of the critical region)
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* Thermodynamic Stability

Not an unambiguous signature of CP!
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Stephanov, Phys. Rev. Lett. (2011)

Any choices that display the dip
thermodynamically consistent?
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Choice of parameters affects behavior of baryon kurtosis
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» |dentifying thermodynamic stability

Not every parameter choice will result in a thermodynamically stable EOS.
_ C2<0or
C2>1
acausal +
s, &, ng, P<O

S, €, Ng, c;2: combination of derivatives of the pressure.

Stability is encoded in P: how do we use that in our favor and reduce the
computational costs of constraining our model?

Can we determine thermodynamic stability without taking derivatives?
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* Formulating a well-posed machine learning
problem

A computer learns from experience E with respect to some class
of tasks T and performance measure F, if its performance at tasks
in T improves, as measured by F, with experience E.

-
Training Data Classify Test
Data
Labeled Build Classifier — Model
realizations of the Stable vs. Accuracy
EOS with CP Unstable

— Final version of the classifier can be used in large scans of the parameter space
to understand underlying physics (coming soon).
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= Preprocessing Steble

Goals of preprocessing stage:
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Pressure contains extra information

We want to detect features such as:
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= Preprocessing

Combination of SVD and averaging yields class separation described by 3 features.

r:P(To, x, usgc, w, p) — v(To, K, tsc, W, p)

Dim(P) = 771x451 - grid size
Dim(v) = 3

o {v1, vy, v3}




» Choosing the right model & training strategy

Collection of classifiers

1) Random Forest learn a model
L. Breiman ML (2001)

2) Support Vector Machine
C. Cortes, V. Vapnik ML (1995) tr;?rgﬁsget

3) Gradient Boosting -—
J. Friedman Annals of Statistics (2001)

4) K-Nearest Neighbors k

machine learning
model \

unlabeled pool
Uu

E. Fix, J.L. Hodges, (1951).

Samplmg oracle (e.g., human annotator) select queries

1) Passive (random)

2) Active B. Settles, Active Learning Lit. Survey (2009)
i.  Margin

ii. Entropy




» Active Learning Framework
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= Results
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Same process is repeated 5x per model per sampling method.

Active learning
outperforms random
sampling.

Non-parametric
classifiers perform
better — irregular
boundaries



» 2D projected class boundaries

RF SVM

Consistent features
across different
classifiers — class
separation is present

Success in creating a
mechanism to
classify Equations of
State




= Conclusions & future work

* Need better understanding of CP influence on EOS.

*  We have built a tool to constrain parametrically complex
models — not just BEST EOS, can be extended to higher-

dimensional models
* We have demonstrated through systematic analysis that
1) ML can be used to constrain EOS

2) Active learning significantly cuts back on sampling

requirements




