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1. The search for the QCD critical point
I. Current understanding + missing pieces 
II. 2D Equation of State with a critical point
III. Defining a machine learning problem

2. Machine learning and the active learning framework
I. Preparing the data 
II. Systematically comparing algorithm performance
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§The QCD phase diagram: the one we don’t 
know but love

• Known with high precision at μB=0 
S. Borsanyi et al, JHEP (2018)

• Sign problem at finite μB
M. Troyer and U.J. Wiese, Phys. Rev. Lett. (2005)

→ Challenges in interpreting 
recent/future experimental results.

To-do: Changes to IC + hydro + 
hadronization + transport are still 
needed in the vicinity of a CP.

Starting point: EOS with CP at finite 
baryon density matching Lattice at 
μB=0.

WB Phys.Rev.Lett. (2020); P. Alba et al Phys.Lett. (2014);
Bellwied et al arXiv:1805.00088; V. Dexheimer ariXiv:1708.08342; 
Critelli et al, Phys.Rev. D96 (2017); 
HADES Nature Phys. (2019); Nucl.Phys.A (2014)
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§ Exploring the baryon dense regime

We can perform a Taylor 
expansion around 𝜇B = 0

R. Bellwied et al, Phys. Lett. B (2015).

• Few coefficients from lattice → indication that 𝜇B/T < 2 is disfavored 
• No knowledge beyond CP (𝜇B > 𝜇BC ) A. Bazavov et al Phys. Rev. D (2017).
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§ QCD phase diagram with a critical point from 
the 3D Ising model

Safe assumption: transition line is a 
parabola with curvature κ

Up to 𝓞(𝜇B4):   P. Parotto, M. Bluhm, DM et al. Phys. Rev. C (2020)

κ and T0 (T at which the transition line 
crosses the T axis) – Estimates from Lattice 
α1   – Obtained from parabola
μBC – Critical baryon chemical potential 
αdiff – Angle difference between the Ising
axes
w, ρ – Scaling parameters (size and shape 
of the critical region) 

3D Ising Model: We can borrow the critical region from 
a theory in the same universality class as QCD. 

Linear map Ising → QCD requires 6 parameters:
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§ Thermodynamic Stability

DM et al arXiv:2008.04022

𝜒B
4

?

Stephanov, Phys. Rev. Lett. (2011)

Choice of parameters affects behavior of baryon kurtosis

Any choices that display the dip 
thermodynamically consistent?

𝜒4
Ising
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Not an unambiguous signature of CP!



§ Identifying thermodynamic stability
Not every parameter choice will result in a thermodynamically stable EOS.

stable unstable

Cs
2 < 0 or 

Cs
2 > 1

acausal + 
s, 𝜀, nB, P < 0 

s, 𝜀, nB, cs
2 : combination of derivatives of the pressure.

Stability is encoded in P: how do we use that in our favor and reduce the 
computational costs of constraining our model?

Can we determine thermodynamic stability without taking derivatives?
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§ Formulating a well-posed machine learning 
problem

A computer learns from experience E with respect to some class 
of tasks T and performance measure P, if its performance at tasks 
in T improves, as measured by P, with experience E. 

E T

P

→ Final version of the classifier can be used in large scans of the parameter space 
to understand underlying physics (coming soon).
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§ Preprocessing
Goals of preprocessing stage:
i) Reduce input dimension.
ii) Obtain separation between the classes.

J. Wijnands et al Comput. Aided Civ. Inf. (2020) 

Preprocessing filters out relevant features
Pressure contains extra information 

Stable Unstable

Second baryon cumulant at T = 148 MeV

We want to detect features such as:
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§ Preprocessing
Combination of SVD and averaging yields class separation described by 3 features. 

𝞒: P(T0, 𝜅, 𝜇BC, w, 𝜌) → v(T0, 𝜅, 𝜇BC, w, 𝜌)

Dim(P) = 771x451 – grid size
Dim(v) = 3 

𝞒:

{v1 , v2, v3}
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§ Choosing the right model & training strategy
Collection of classifiers
1) Random Forest

L. Breiman ML (2001)

2) Support Vector Machine
C. Cortes, V. Vapnik ML (1995)

3) Gradient Boosting
J. Friedman Annals of Statistics (2001) 

4) K-Nearest Neighbors
E. Fix, J.L. Hodges, (1951).

Sampling

1) Passive (random)
2) Active 

i. Margin
ii. Entropy

B.  Settles, Active Learning Lit. Survey (2009) 
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§ Active Learning Framework

Test
(~4k)

ℒ0
Training (k= 200)

𝒰0
Pool
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Random 
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Same process is repeated 5x per model per sampling method. 

Random
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• Active learning 
outperforms random 
sampling.

• Non-parametric 
classifiers perform 
better → irregular 
boundaries

Test accuracy evolution with training set expansion with 1-𝛔
uncertainty bands.
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§ Results



§ 2D projected class boundaries
• Consistent features 

across different 
classifiers → class 
separation is present

• Success in creating a 
mechanism to 
classify Equations of 
State
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§ Conclusions & future work

• Need better understanding of CP influence on EOS.

• We have built a tool to constrain parametrically complex 

models → not just BEST EOS, can be extended to higher-

dimensional models 

• We have demonstrated through systematic analysis that 

1) ML can be used to constrain EOS

2) Active learning significantly cuts back on sampling 

requirements
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