Characterizing the Initial Stages of a Heavy-Ion Collision for Determining Final State Evolution: Including Conserved Charges, Momentum, and Stress

Jefferson Sousa and Matthew Luzum

Universidade de São Paulo

January 2021
Introduction

- Heavy-ion collision: complicated process represented as
 \[V_n = \kappa_n \epsilon_n \]
Introduction

- Heavy-ion collision: complicated process represented as

\[V_n = \kappa_n \epsilon_n \]

Final State
Introduction

- Heavy-ion collision: complicated process represented as $V_n = \kappa_n \epsilon_n$

 - Final State
 - Initial State

Response

Until now: only energy density is considered

Goal: include $T_{\mu\nu}$ components and conserved currents

Motivation: determine relevant aspects, importance of the contributions, importance in other collision systems
Introduction

- Heavy-ion collision: complicated process represented as

$$V_n = \kappa_n \epsilon_n$$

Final State \quad Response \quad Initial State
Heavy-ion collision: complicated process represented as

```
V_n = \kappa_n \epsilon_n
```

Final State \hspace{10cm} Response \hspace{10cm} Initial State

Until now: only energy density is considered
Introduction

- Heavy-ion collision: complicated process represented as
 \[V_n = \kappa_n \epsilon_n \]
 Final State \quad \text{Response} \quad Initial State

- Until now: only energy density is considered
- Goal: include \(T^{\mu\nu} \) components and conserved currents
Heavy-ion collision: complicated process represented as
\[V_n = \kappa_n \epsilon_n \]

Final State \(\rightarrow \) Response \(\rightarrow \) Initial State

- Until now: only energy density is considered
- Goal: include \(T^{\mu\nu} \) components and conserved currents
- Motivation: determine relevant aspects, importance of the contributions, importance in other collision systems
Cumulants expansion
Including Baryon density

\[\rho(\vec{x}) = T^{\tau\tau}(\vec{x}) \]
Cumulants expansion
Including Baryon density

$$\rho(\vec{x}) = T^{\tau\tau}(\vec{x})$$

$$\epsilon_n = -\frac{W_{n,n}}{\left(W_{0,2}\right)^{n/2}}$$

$$V_n = \kappa_n \epsilon_n$$
Cumulants expansion

Including Baryon density

\[\rho(\vec{x}) = T^{\tau\tau}(\vec{x}) + \gamma B(\vec{x}) \]

\[\epsilon_n(\gamma) = - \frac{W_{n,n}}{\left(W_{0,2} \right)^{n/2}} \]

\[V_n = \kappa_n \epsilon_n(\gamma) \]
Cumulants expansion
Including Baryon density

- **Charge conjugation**

 \[B(\vec{x}) \rightarrow -B(\vec{x}) \]

 \[V_{n}^{(net)} \equiv V_{n}^{+p} - V_{n}^{-p} \]

- **Antisymmetrizing the eccentricity** \(\epsilon_{n}(\gamma) \)

 \[
 \epsilon_{n}^{(net)}(\gamma) \equiv \epsilon_{n}(\gamma) - \epsilon_{n}(-\gamma)
 \]
Cumulants expansion

Including Baryon density

- Charge conjugation

\[B(\vec{x}) \rightarrow -B(\vec{x}) \]

\[V_{n}^{(\text{net})} \equiv V_{n}^{+p} - V_{n}^{-p} \]

\[\rho(\vec{x}) \]

\[T^{\tau\tau}(\vec{x}) + \gamma B(\vec{x}) \rightarrow T^{\tau\tau}(\vec{x}) - \gamma B(\vec{x}) \]

- Antisymmetrizing the eccentricity \(\epsilon_{n}(\gamma) \)

\[\epsilon_{n}^{(\text{net})}(\gamma) \equiv \epsilon_{n}(\gamma) - \epsilon_{n}(-\gamma) \]

\[V_{n}^{(\text{net})} = \kappa_{n}\epsilon_{n}^{(\text{net})}(\gamma) \]
Numerical tests

\[T^\tau (\vec{x}) = Ae^{-\frac{r^2}{2\sigma^2}} \]

\[B(\vec{x}) = r^2 Re^{-\frac{r^2}{2\sigma^2}} \cos 2\phi \]

\[B(\vec{x}) = r^2 Re^{-\frac{r^2}{2\sigma^2}} \cos 3\phi \]
\[V_{2}^{\text{net}} = V_{2}^{+p} - V_{2}^{-p} \]

\[B(\vec{x}) = r^2 \text{Re} \left(-\frac{r^2}{2\rho^2} \right) \cos 2\phi \]

\[
\begin{array}{c|c|c|c|c|c|c|c}
R (\text{fm}^{-1}) & 0.0 & 0.05 & 0.1 & 0.0 & 0.05 & 0.1 & 0.0 & 0.05 & 0.1 \\
\{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} & \{0.0 - 0.1\} \\
\end{array}
\]
\[V_{3}^{\text{net}} = V_{3}^{+p} - V_{3}^{-p} \]

\[B(\vec{x}) = r^2 \text{Re} \left(-\frac{r^2}{2\rho^2} \cos 3\phi \right) \]

\[
\begin{array}{c|c}
R \text{ (fm}^{-1}) & \\
\hline
\{0.0 - 0.1\} & \\
\end{array}
\]
Conclusions

- Include other aspects of initial conditions in the eccentricity (ϵ_n)
- Numerical tests
- How treat the charge conjugation (Baryon density)
Extra: Cumulants expansion

\[\rho(\vec{x}) = T^{\tau \tau}(\vec{x}) \]

\[e^{W(\vec{k})} = \int d^2 x \rho(\vec{x}) e^{-i \vec{k} \cdot \vec{x}} \]

\[W(\vec{k}) = \sum_{n=-\infty}^{\infty} \sum_{m=-|n|}^{\infty} W_{n,m} k^m e^{-in\phi_k} \]

\[\epsilon_n = -\frac{W_{n,n}}{\left(W_{0,2}\right)^{\frac{n}{2}}} \]

\[V_n = \kappa_n \epsilon_n \]
Extra: Including Momentum and Stress

\[\rho(\vec{x}) = T^{\tau\tau}(\vec{x}) \]

\[e^{W(\vec{k})} = \int d^2x \rho(\vec{x}) e^{-i\vec{k} \cdot \vec{x}} \]

\[W(\vec{k}) = \sum_{n=-\infty}^{\infty} \sum_{m=|n|}^{\infty} W_{n,m} k^m e^{-in\phi_k} \]

\[\epsilon_n = -\frac{W_{n,n}}{\left(W_{0,2}\right)^{n/2}} \]

\[V_n = \kappa_n \epsilon_n \]
Extra: Including Momentum and Stress

\[\rho(\vec{x}) = T^{\tau\tau}(\vec{x}) + \alpha \partial_i T^{\tau i}(\vec{x}) + \beta \partial_i \partial_j T^{ij}(\vec{x}) \]

\[e^{W(\vec{k})} = \int d^2x \rho(\vec{x}) e^{-i\vec{k} \cdot \vec{x}} \]

\[W(\vec{k}) = \sum_{n=-\infty}^{\infty} \sum_{m=-|n|}^{\infty} W_{n,m} k^m e^{-in\phi_k} \]

\[\epsilon_n(\alpha, \beta) = -\frac{W_{n,n}}{\left(W_{0,2}\right)^{\frac{n}{2}}} \]

\[V_n = \kappa_n \epsilon_n(\alpha, \beta) \]