Polarization in heavy-ion collisions via local initial energy deposition

SERENONE, W. M., BARBON, J., CHINELLATO, D. D., LISA, M., SHEN, C., TAKAHASHI, J., TORRIERI, G.
Jet quenching and polarization

High energy density region (Hot bullet)

Unknows:
- How relate u_x and p_x
- What should be the total energy of the hot bullet
Smooth IC + Hot spot carrying momentum

\[T_{\mu\nu} = \frac{1}{V} p^{\mu} p^{\nu} = \frac{1}{V} \begin{pmatrix} E & p_x & 0 & 0 \\ p_x & p_x^2/E & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \]

Then solve \(T_{\mu\nu} u_{\nu} = \epsilon u^\mu \)

\[M_{\text{eff}} = \sqrt{E^2 - p_x^2} \]

\[\epsilon = \frac{1}{V} M_{\text{eff}}^2 = \frac{1}{V} 30 \text{ GeV}; \]

\[u^x = \frac{p_x}{M_{\text{eff}}} = 1.27; \quad u^\tau = \sqrt{1 + (u^x)^2} \]
Vorticity evolution in (3+1)D viscous hydrodynamics
Vorticity evolution in (3+1)D viscous hydrodynamics
R-observable: \(R^\hat{j}(\hat{p}) = \frac{\hat{P} \cdot (\hat{j} \times \hat{p})}{|\hat{j} \times \hat{p}|} \)

- \(p\mu = -\frac{1}{8m} \varepsilon^{\mu \nu \rho \sigma} p_{\sigma} \int d\Sigma^\lambda p_{\lambda} (1-n_F) \omega_{\nu \rho} \int d\Sigma^\lambda p_{\lambda} n_F \)

- \(n_F = \frac{1}{1+\exp(\beta p_{\mu} - \mu Q/T)} \)

- Strength of \(R_j \) is heavily dependent of shear viscosity
 - Position of peak changes very little (in the limit of the grid)

- Ideal hydro and \(\frac{\eta}{S} = 0.01 \) are very similar

F. Becattini and M. Lisa
Conclusion

• If a hard parton deposits (part of) its energy and momentum and thermalizes with the medium, it will generate a vortex ring.

• This can be quantified by the ring observable $R_j(p) = \frac{\hat{p} \cdot (j \times \hat{p})}{|j \times \hat{p}|}$

• It shows strong sensitivity to medium shear viscosity.
THANKS

Processes: # 2017/05685-2
2019/05700-7