Initializing BSQ Across System Size With Open Source ICCING

Patrick Carzon*

Matthew Sievert**

Jacquelyn Noronha-Hostler*

- ICCING (Initial Conserved Charges in Nuclear Geometry) samples a $(g \rightarrow qq^-)$ splitting function
- ICCING in C++, open source soon

ICCING: M. Martinez, M. D. Sievert, D. E. Wertepny, P. Carzon, and J. Noronha-Hostler, 1911.12454 (in preparation)
M. Martinez, M. D. Sievert, D. E. Wertepny, P. Carzon, and J. Noronha-Hostler, 1911.10272 (in preparation)

Quark Multiplicities Across System Size

Tenfold increase in quarks from OO to PbPb though same ratios

- Depends on α_s and gluon radius (r)
- Future
 - Retune α_s and r to obtain quark content from particle yields
 - More OO results

Comparison of Energy and

Conserved Charge Ellipticities

- ICCING energy $\epsilon_2\{2\}$ matches Trento
- Baryon/Charge follow energy up to 60% Centrality
- Strange quarks produced in hotspots explains difference from Baryon/Charge

Fluctuations in Ellipticity

- Trends hold from original analysis
- Baryon/Charge follows
 Energy trend but departs
 in magnitude
- Significant difference between Baryon/Charge and Strange
- Good estimate for final flow harmonic
- Can be used to constrain parameters

More Fluctuations

Conclusions and Future

- ICCING Quark multiplicities reproduced
- PbPb energy $\epsilon_2\{2\}$ matches previous results
- OO and PbPb multiplicities differ by 10x but contain same quark ratios
- Distinct difference in Strange and Baryon/Charge
- Baryon/Charge $\epsilon_2\{2\}$ tracks energy in central and midcentral, $\epsilon_2\{4\}/\epsilon_2\{2\}$ differs in magnitude
- $v_2\{4\}/v_2\{2\}$ can restrain parameters
- More OO results
- Publish open-source ICCING
- Will run in BSQ hydro code, See Travis Dore (IS Thur. 16:15) and Debora Mroczek (NT Mon. 18:40)