QGP TOMOGRAPHY: INFERRING BULK MEDIUM PROPERTIES FROM HIGH p_{\perp} data

STEFAN STOJKU, INSTITUTE OF PHYSICS BELGRADE

IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, JUSSI AUVINEN, MARKO DJORDJEVIC AND PASI HUOVINEN

INTRODUCTION

- Bulk properties of QGP traditionally explored with low-p_ particles (99.9% of particles formed in a heavy-ion collision).
- Rare high energy particles traversing QCD medium excellent probe of QGP properties.
- DREENA-A: theoretical predictions can be compared with a wide range of experimental data.
- The dynamics before thermalization time *τ*₀ not established
 *τ*₀ is an important parameter affects evolution of the system, as well as interactions of high *p*_⊥ particles with the medium
- Conventional hydrodynamics approach: vary τ_o and compare obtained distributions with data
- Low p_{\perp} data provides only weak limits to the thermalization time: $\tau_0 = 0.59 \pm 0.41 fm/c \implies$ further constraints would be useful!

MODEL DESCRIPTION

- Our approach: how do high p_{\perp} observables R_{AA} and v_2 depend on the QGP thermalization time τ_0 ?
- We describe the medium using 3+1D viscous hydro model E. Molnar, H. Holopainen, P. Huovinen and H. Niemi, Phys. Rev. C90, 044904 (2014).

Bass et al. (2017): comparison of hydro low p_⊥ data insensitive to a wide range of τ₀ (0.2fm < τ₀ < 1.2fm)
 Independently confirmed by our systematic analysis: 3+1D viscous hydro model run with six different τ₀:

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- Good agreement with low p_⊥ data confirms low sensitivity to τ₀.
- Can this indeterminancy be further constrained through high p_⊥ theory and data?

High p_{\perp} Results for Various $au_{ m o}$

Next step: use DREENA-A to generate high p_{\perp} data for all τ_{o} (charged hadrons, $Pb + Pb @ \sqrt{s_{NN}} = 5.01 \text{ TeV}$)

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- Low $p_{\perp}v_2$ is completely insensitive to different τ_0 .
- On the other hand, high p_{\perp} predictions can clearly be resolved against experimental data.
- **Later thermalization time is clearly preferred by** R_{AA} and v_2 .

Heavy Flavor High p_\perp Results for Various $au_{ m o}$

■ DREENA-A predictions for D mesons (full curves) and B mesons (dashed curves), $Pb + Pb @ \sqrt{s_{NN}} = 5.01$ TeV

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

- D meson: ALICE (red triangles), CMS (blue squares)
- B meson: CMS non-prompt J/ψ (green circles)
- Heavy quarks are even more sensitive to τ_o.
- Later thermalization time is preferred.

LATER QUENCHING TIME?

- What if jet quenching starts later than QGP thermalization time (and subsequent medium evolution) τ_o?
- To test this scenario, we introduce quenching time $\tau_q \geq \tau_o$
- **DREENA-A** results generated on a temperature profile with $\tau_0 = 0.2$ fm, but τ_q in the range of = 0.2-1.2fm:

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

• v_2 surprisingly insensitive to $\tau_q!$

EXPLAINING THE OBSERVED SENSITIVITY

- ... of high p_{\perp} observables R_{AA} and v_2 on τ_0 (and τ_q)
- We evaluated the average temperatures that partons experience while traversing the medium in the in-plane ($\phi = 0$) and out-of-plane ($\phi = \pi/2$) directions for various τ_0

S. Stojku, J. Auvinen, M. Djordjevic, P. Huovinen and M. Djordjevic, arXiv:2008.08987 [nucl-th]

 As τ_o increases ⇒ the difference between average in-plane and out-of-plane temperatures increases

• Recall that $v_2 \approx \frac{1}{2} \frac{R_{AA}^{in} - R_{AA}^{out}}{R_{AA}^{in} + R_{AA}^{out}}$

Explains the observed dependence of v₂ on τ₀.

CONCLUSION AND ACKNOWLEDGEMENTS

- We presented (to our knowledge) the first example of using high p_⊥ theory and data to constrain a parameter weakly sensitive to bulk medium evolution
- We demonstrated that experimental data favors later QGP thermalization time.
- This demonstrates synergy of low- and high-*p*_⊥ QGP physics, supporting our QGP tomography approach.

Established by the European Commission

МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА