Initial Stages 2021

Contribution ID: 186

Type: bullet talk (poster)

Thermalization time constrained by high-pt QGP tomography

Tuesday 12 January 2021 19:40 (1h 30m)

We show that high- $p_{\perp} R_{AA}$ and v_2 are way more sensitive to the QGP thermalization time, τ_0 , than the distributions of low- p_{\perp} particles, and that the high- p_{\perp} observables prefer relatively late thermalization at $\tau_0 \sim 1 \text{ fm/c}$. To calculate high- $p_{\perp} R_{AA}$ and v_2 , we employ our newly developed DREENA-A formalism, which combines state-of-the-art dynamical energy loss model with 3+1dimensional hydrodynamical simulations. The model applies to both light and heavy flavor, and we predict a larger sensitivity of heavy observables to the thermalization time. Elliptic flow parameter v_2 is also more sensitive to τ_0 than R_{AA} due to non-trivial differences in the evolution of in-plane and out-of-plane temperature profiles. This presents the first time when a parameter describing bulk QGP has been constrained by high- p_{\perp} observables and related theory, i.e., by so-called QGP tomography.

Authors: Mr STOJKU, Stefan (Institute of Physics Belgrade); Dr AUVINEN, Jussi (Institute of Physics Belgrade); Prof. DJORDJEVIC, Marko (University of Belgrade, Faculty of Biology); Dr HUOVINEN, Pasi (Institute of Physics Belgrade); DJORDJEVIC, Magdalena (Institute of Physics Belgrade)

Presenter: Mr STOJKU, Stefan (Institute of Physics Belgrade)

Session Classification: Poster

Track Classification: The initial stages of heavy-ion collisions