Overview
We perform classical Yang-Mills simulations of the 3+1D structure of the initial state, based on the CGC framework beyond the boost-invariant approximation.

General Formalism for 3+1D Collisions
Idea: Superimpose the fields coming from individual nuclei which then evolves to produce glasma.

\[
[D_{\mu}, F^{\mu\nu}] = J^{\nu} \quad \text{Yang-Mills equation}
\]

\[
[D_{\mu}, J^{\mu}] = 0 \quad \text{Current conservation equation}
\]

Model for realistic color charge distribution
Plan: Connect the color charge distribution to the measurements of hadronic structure function from DIS experiments.

Assumption: Position and momentum dependence can be factorised as

\[
\langle \rho^a(x)\rho^b(y) \rangle = \delta^{ab} T\left(\frac{x + y}{2}\right) \Gamma(x - y)
\]

\(\Gamma(x - y)\) constrained by parametrising small-x TMDs in dilute limit with GBW model.

Overall thickness of nucleus obtained by superimposing 3D MC-Glauber profile

\[
T(x, y, z) = \sum_i A_i T_i(x, y, z)
\]

Collision with (semi-) realistic charges
Explore the longitudinal fluctuation which emerge naturally within our framework.

Effects of fluctuations smallish but clearly visible; promising dependence on center of mass energy

Conclusion & Outlook
Developed a framework to describe 3D profiles of initial energy deposition. Successful results from numerical simulations.

Explore larger rapidity window and get additional insights from analytics.

Acknowledgement
We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) through the grant CRC-TR 211 "Strong-interaction matter under extreme conditions". Computational resources have been provided by Paderborn Centre for Parallel Computing (PC2) and National energy Research Scientific Computing Center (NERSC).

1Based on S. Schlichting and P. Singh Phys. Rev. D 103, 014003 and references within.