Influence of fluctuating initial-state shape deformations in ultra-central collisions

Peifeng Liu (speaker)
Roy Lacey

Stony Brook University

Initial Stages 2021
Jan 13 2021

This research is supported by the US DOE under contract DE-FG02-87ER40331.A008.
Puzzle: ultracentral v_2 in Pb+Pb

- Hydrodynamic calculations continue to predict higher v_2 than measured, for both 2.76 and 5.02 TeV.
- Can also be visualized with acoustic scaling (see eg. Liu & Lacey Phys. Rev. C 98, 031901 (2018)).

$$\log \frac{v_n}{\varepsilon_n} \propto -\frac{\eta}{s R T} \propto -M^{-1/3} \propto -N_{c_{\text{part}}}^{-1/3}$$

The drop of v_2/ε_2 suggests an initial stage issue.

- Eccentricities are calculated from a quark Glauber code as in the previous work.
- We use ATLAS 5.02 TeV Pb+Pb flow data (EPJC 78(2018) 997) for $p_T=0.5-0.8$ GeV. It contains v_2 for ultracentral bins 0-0.1% and 0-1%.
For U+U, deformation increases e_2 by 70% for the central 1%. Deformation is important for central collisions!

Investigate shape of Pb as sampled from single particle distribution and the effect on eccentricity.

Event by event we need an effective deformation β. We follow Gilbreth, Alhassid and Bertsch PRC 97, 014315 (2018) and use 2nd order spherical harmonics in the frame where

$$ \langle xy \rangle = \langle yz \rangle = \langle zx \rangle = 0 \text{ and, } \langle z^2 \rangle > \langle x^2 \rangle > \langle y^2 \rangle $$

then only there are only two nonzero components

$$ r^2 Y_{2,0} = \frac{1}{4} \sqrt{\frac{5}{\pi}} (-x^2 - y^2 + 2z^2) $$

$$ r^2 Y_{2,2} = \frac{1}{4} \sqrt{\frac{15}{\pi}} (x^2 - y^2) $$

Define $\beta_i = (4\pi/5) Y_{2,i}$ and take two-norm, $\beta = \sqrt{\sum \beta_i^2}$. Also define $\gamma = \arctan \beta_2 / \beta_0$

If we have a deformed Fermi dist, this gives the same β, in the limit of small β and zero skin depth.

$\gamma = 0$ for perfectly prolate nucleus, 60° for oblate.
EbyE deformation: 2D β distribution

- 2D β distribution for Pb, U
- EbyE Pb can get sizable deformation (rms β 0.12) from the sampling process
- Density is approximately $\beta^4 \sin 3\gamma \exp(-\beta^2 / C)$ for a spherical system when the 5 spherical harmonic components have gaussian distribution
EbyE deformation: 1D β distribution

- Gaussian ansatz

 \[\beta^4 \exp(-\beta^2/C) \]

 describes Pb well

- There is significant overlap between Pb and U

- NN correlation, even Pauli exclusion could modify these distributions!
Effect of deformation in central Pb+Pb

- Conditional mean of ε_2 is approximately linear in β_A when selecting on one side, or $\beta_A + \beta_B$ when selecting on the sum

- Dependence is strong for central events
Reduction of deformation fluctuation

- In the frame $\langle xy \rangle = \langle yz \rangle = \langle zx \rangle = 0$
- Rescale x, y, z independently, so $Y_{2,i}$ is linear combination of original and “smooth” value $Y^*_{2,i}$
 \[\tilde{Y}_{2,i} = R Y_{2,i} + (1 - R) Y^*_{2,i} \]
- RMS radius is fixed
- We find with $R=0.72$ we can achieve scaling in v_2 (next page) for Pb+Pb. ε_3 is not changed
- Similar to permanent deformation, the effect is mostly in 0-5% centrality
- If we do this for U+U the relative change is much smaller (-4% for 0-1%, vs -18% for Pb+Pb)

$\varepsilon_2\{2\}$ before and after deformation reduction

![Graphs showing deformation reduction](image-url)
Scaling with deformation reduction

- Scaling now holds for all measured centrality bins
Mean p_T dependence of v_2 in Au+Au

- Observable proposed to show shape of nuclei (G. Giacalone, Phys. Rev. C 102, 024901 (2020))
- For example, in U+U body-body collisions has large v_2, large initial size R, small $<p_T>$ => anti-correlation between v_2 and $<p_T>$
- From AMPT we extract $<p_T>$ vs R response and apply to Glauber events
Mean p_T dependence of v_2 in Au+Au

- $\varepsilon_2\{2\}$ ordered as expected
- Reduction of fluctuation greatly reduces the mean p_T dependence signal
- At track level for typical p_T, v_2 is roughly proportional to p_T. This would give a contribution of about 1 to normalized slope in all cases and is not included here.
Summary

• Event by event we calculated the deformation parameters β and γ for each nucleus from the nucleons
• By sampling from the single-body distribution we get a sizable rms $\beta=0.12$ for Pb
• Deformation drives ε_2 for spherical systems for central 5%
• Scaling down β allows us to get a set of eccentricities that scales v_2. This suggests sampling from single-body distribution gives an unphysically wide β distribution
• Shape fluctuation could be important for $v_2-<p_T>$ relationship, more important than the β input in our Au+Au example