Influence of fluctuating initial-state shape deformations in ultra-central collisions

Peifeng Liu (speaker) Roy Lacey

Stony Brook University

Initial Stages 2021 Jan 13 2021

This research is supported by the US DOE under contract DE-FG02-87ER40331.A008

1

Puzzle: ultracentral v₂ in Pb+Pb

- Hydrodynamic calculations continues to predict higher v₂ than measured, for both 2.76 and 5.02TeV
- Can also be visualized with acoustic_{1-5%} scaling (see eg. Liu & Lacey Phys. Rev. C 98, 031901 (2018)). 0-1%

$$\log \frac{v_n}{\varepsilon_n} \propto -\frac{\eta}{s} \frac{n^2}{RT} \propto -M^{-1/3} \propto -N_{\rm cpart}^{-1/3}$$

The drop of v_2/ϵ_2 suggests an initial stage issue

- Eccentricities are calculated from a quark Glauber code as in the previous work
- We use ATLAS 5.02TeV Pb+Pb flow data (EPJC 78(2018) 997) for p_T =0.5-0.8GeV. It contains v_2 for ultracentral bins 0-0.1% and 0-1%.

EbyE deformation

- For U+U, deformation increases e2 by 70% for the central 1%. Deformation is important for central collisions!
- Investigate shape of Pb as sampled from single particle distribution and the effect on eccentricity
- Event by event we need an effective deformation β . We follow

Gilbreth, Alhassid and Bertsch PRC 97, 014315 (2018) and use 2nd order spherical harmonics in the frame where

 $\langle xy\rangle=\langle yz\rangle=\langle zx\rangle=0$ and, $\langle z^2\rangle>\langle x^2\rangle>\langle y^2\rangle$

· then only there are only two nonzero components

$$r^{2}Y_{2,0} = \frac{1}{4}\sqrt{\frac{5}{\pi}}(-x^{2} - y^{2} + 2z^{2})$$

$$r^{2}Y_{2,2} = \frac{1}{4}\sqrt{\frac{15}{\pi}}(x^{2} - y^{2})$$
(5) Y_{2} and take two-norm $\beta = \sqrt{\sum \beta^{2}}$ Also define $\gamma = \arctan \beta_{2}$

- Define $\beta_i = (4\pi/5)Y_{2,i}$ and take two-norm, $\beta = \sqrt{\sum \beta_i^2}$ Also define $\gamma = \arctan \beta_2/\beta_0$
- If we have a deformed Fermi dist, this gives the same β , in the limit of small β and zero skin depth
- γ=0 for perfectly prolate nucleus, 60° for oblate

EbyE deformation: 2D β distribution

- 2D β distribution for Pb, U
- EbyE Pb can get sizable deformation (rms β 0.12) from the sampling process
- Density is approximately $\beta^4 \sin 3\gamma \exp(-\beta^2/C)$ for a spherical system when the 5 spherical harmonic components have gaussian distribution

EbyE deformation: 1D β distribution

Distribution of β for Pb and U

Gaussian ansatz

$$\beta^4 \exp(-\beta^2/C)$$

describes Pb well

- There is significant overlap between Pb and U
- NN correlation, even Pauli exclusion could modify these distributions!

Effect of deformation in central Pb+Pb

- Conditional mean of ϵ_2 is approximately linear in β_A when selecting on one side, or $\beta_A + \beta_B$ when selecting on the sum
- Dependence is strong for central events

Reduction of deformation fluctuation

- In the frame $\langle xy\rangle=\langle yz\rangle=\langle zx\rangle=0$
- Rescale x, y, z independently, so $Y_{2,i}$ is linear combination of original and "smooth" value $Y_{2,i}^*$ $\tilde{Y}_{2,i} = RY_{2,i} + (1-R)Y_{2,i}^*$
- RMS radius is fixed
- We find with R=0.72 we can achieve scaling in v_2 (next page) for Pb+Pb. ϵ_3 is not changed
- Similar to permanent deformation, the effect is mostly in 0-5% centrality
- If we do this for U+U the relative change is much smaller (-4% for 0-1%, vs -18% for Pb+Pb)

Scaling with deformation reduction

• Scaling now holds for all measured centrality bins

Acoustic scaling without and with a β scaling

Mean p_T dependence of v_2 in Au+Au

- Observable proposed to show shape of nuclei (G. Giacalone, Phys. Rev. C 102, 024901 (2020))
- For example, in U+U body-body collisions has large v_2 , large initial size R, small p_T > =>anti-correlation between v_2 and p_T >
- From AMPT we extract <p_T> vs R response and apply to Glauber events

AMPT <p_> vs R relationship for Au+Au 200GeV

Mean p_T dependence of v_2 in Au+Au

- ε₂{2} ordered as expected
- Reduction of fluctuation greatly reduces the mean p_T dependence signal
- At track level for typical p_T, v₂ is roughly proportional to p_T. This would give a contribution of about 1 to normalized slope in all cases and is not included here.

Summary

- Event by event we calculated the deformation parameters β and y for each nucleus from the nucleons
- By sampling from the single-body distribution we get a sizable rms β =0.12 for Pb
- Deformation drives ϵ_2 for spherical systems for central 5%
- Scaling down β allows us to get a set of eccentricities that scales v_2 . This suggests sampling from single-body distribution gives an unphysically wide β distribution
- Shape fluctuation could be important for v_2 -< p_T > relationship, more important than the β input in our Au+Au example