Heavy quarks embedded in glasma

Alina Czajka NCBJ, Warsaw

in collaboration with Margaret Carrington and Stanisław Mrówczyński
Initial Stages 2021, January 12th, 2021

Heavy quarks

Heavy quarks - charm and beauty - due to their large masses are produced with high p_{T} at the earliest stage of HIC through hard interactions.

Heavy quarks propagate through the QCD medium and test its evolution at all stages.
Heavy quark in a weakly interacting QCD thermal medium (kinetic theory) -
a Brownian particle undergoing random kicks from fast-moving particles of the medium (changes of movement, energy loss due to collisions and due to radiation)

What are the effects of pre-equilibrium phase on heavy quarks?
Heavy quarks: $m, p^{\mu}, E_{\mathbf{p}}, \mathbf{v}=\frac{\mathbf{p}}{E_{\mathbf{p}}}-$ mass, four-momentum, energy and velocity of HQ

$$
Q(t, \mathbf{r}, \mathbf{p})-\quad \text { distribution function of heavy quarks in the medium }
$$

Soft classical field (because of the large occupation numbers): $A^{\mu}(x)$
Interaction: $\quad \mathbf{F}(t, \mathbf{r}) \equiv g(\mathbf{E}(t, \mathbf{r})+\mathbf{v} \times \mathbf{B}(t, \mathbf{r}))-\quad$ color Lorentz force
$\mathbf{E}(t, \mathbf{r}), \mathbf{B}(t, \mathbf{r})$ - chromoelectric and chromomagnetic fields

Fokker-Planck equation

Evolution equation on the distribution function of heavy quarks: Mrówczyński, Eur. Phys. J. A54, no 3, 43 (2018)

$$
\left(D-\nabla_{p}^{i} \boldsymbol{X}^{i j}(\mathbf{V}) \nabla_{p}^{j}-\nabla_{p}^{i} \mathbf{Y}^{i}(\mathbf{V})\right) n(t, \mathbf{X}, \mathbf{P})=0
$$

$$
\langle Q(t, \mathbf{r}, \mathbf{p})\rangle=n(t, \mathbf{r}, \mathbf{p}) \quad D=\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla
$$

Collision terms:

$$
\begin{aligned}
& X^{i j}(\mathbf{v}) \equiv \frac{1}{2 N_{c}} \int_{0}^{t} d t^{\prime}\left\langle F_{a}^{i}(t, \mathbf{x}) F_{a}^{j}\left(t^{\prime}, \mathbf{x}-\mathbf{v}\left(t-t^{\prime}\right)\right)\right\rangle \\
& Y^{i}(\mathbf{v})=X^{i j}(\mathbf{v}) \frac{v^{j}}{T}-\quad \begin{array}{l}
\text { postulated so that the distribution function satisfies } \\
\text { the Fokker-Planck equation in equilibrium }
\end{array} \\
& T \quad-\quad \text { temperature of plasma that has the same energy density as in equilibrium }
\end{aligned}
$$

Collision terms determine energy loss and momentum broadening

$$
\text { Physical meaning: } \quad \frac{\left\langle\Delta p^{i}\right\rangle}{\Delta t}=-Y^{i}(\mathbf{v}) \quad \frac{\left\langle\Delta p^{i} \Delta p^{j}\right\rangle}{\Delta t}=X^{i j}(\mathbf{v})+X^{j i}(\mathbf{v})
$$

CGC: before the collision

Classical Yang-Mills equations: $\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \quad J_{1,2}^{\mu}\left(x^{\mp}, \vec{x}_{\perp}\right)=\delta^{\mu \pm} \rho_{1,2}\left(x^{\mp}, \vec{x}_{\perp}\right)$ Solutions of CYM equations:

$$
\begin{aligned}
& A_{1,2}^{ \pm}\left(x^{ \pm}, \vec{x}_{\perp}\right)=0 \\
& A_{1,2}^{i}\left(x^{ \pm}, \vec{x}_{\perp}\right)=\theta\left(x^{\mp}\right) A_{1,2}^{i}\left(\vec{x}_{\perp}\right)
\end{aligned}
$$

$$
A_{1,2}^{i}\left(\vec{x}_{\perp}\right)=-\frac{1}{i g} U_{1,2}\left(\vec{x}_{\perp}\right) \partial^{i} U_{1,2}^{\dagger}\left(\vec{x}_{\perp}\right)
$$

pure gauge transform of vacuum

$$
U\left(\vec{x}_{\perp}\right) \equiv U\left[g, \rho, \vec{x}_{\perp}\right] \text { - the unitary matrix }
$$

Chromoelectric and chromomagnetic fields are given by the respective components of the strength tensor. They are:

$$
\begin{array}{ll}
E_{1,2}^{z}\left(x^{ \pm}, \vec{x}_{\perp}\right)=0 & E_{1,2}^{i}\left(x^{ \pm}, \vec{x}_{\perp}\right)=-\frac{\delta\left(x^{\mp}\right)}{\sqrt{2}} A_{1,2}^{i}\left(\vec{x}_{\perp}\right) \\
B_{1,2}^{z}\left(x^{ \pm}, \vec{x}_{\perp}\right)=0 & B_{1,2}^{i}\left(x^{ \pm}, \vec{x}_{\perp}\right)=\mp \epsilon^{i j} E_{1,2}^{j}\left(x^{ \pm}, \vec{x}_{\perp}\right)
\end{array}
$$

Only transverse components are different from zero.

After the collisions: glasma

Glasma fields develop in the forward light-cone region.
Analytical approach to solve CYN for the glasma fields proposed in:
Chen, Fries, Kapusta, Li, Phys. Rev. C 92, 064912 (2015)
CGC looses applicability soon after the collision \longrightarrow proper time of such an evolving system is small
\mathcal{T}-acts as an expansion parameter

$$
\begin{aligned}
& A_{\perp}^{i}\left(\tau, \vec{x}_{\perp}\right)=\sum_{n=0}^{\infty} \tau^{n} A_{\perp(n)}^{i}\left(\vec{x}_{\perp}\right) \\
& A\left(\tau, \vec{x}_{\perp}\right)=\sum_{n=0}^{\infty} \tau^{n} A_{(n)}\left(\vec{x}_{\perp}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|A_{\perp(n)}^{i}\right| \sim Q_{s}^{n}|A| \\
& \left|A_{(n)}\right| \sim Q_{s}^{n+1}|A| \\
& |A|=\sqrt{A_{1}^{i} A_{1}^{i}}
\end{aligned}
$$

radius of convergence is set by the only time scale -

$$
1 / Q_{s}
$$

$$
\tau Q_{s} \text {-dimensionless }
$$

Boundary conditions connect different light-cone sectors:

$$
\begin{aligned}
& A_{\perp}^{i}\left(\tau=0, \vec{x}_{\perp}\right)=A_{1}^{i}\left(\vec{x}_{\perp}\right)+A_{2}^{i}\left(\vec{x}_{\perp}\right) \\
& A\left(\tau=0, \vec{x}_{\perp}\right)=-\frac{i g}{2}\left[A_{1}^{i}\left(\vec{x}_{\perp}\right), A_{2}^{i}\left(\vec{x}_{\perp}\right)\right]
\end{aligned}
$$

Using the boundary conditions the system of coupled $Y M$ equations can be solved recursively.

Expansion in the proper time

Expansion of chromodynamic fields

$$
\begin{aligned}
& \mathbf{E}=\mathbf{E}_{(0)}+\tau \mathbf{E}_{(1)}+\tau^{2} \mathbf{E}_{(2)}+\ldots \\
& \mathbf{B}=\mathbf{B}_{(0)}+\tau \mathbf{B}_{(1)}+\tau^{2} \mathbf{B}_{(2)}+\ldots
\end{aligned}
$$

$E_{(0)}^{z}=i g\left[A_{1}^{i}, A_{2}^{i}\right]$

Oth order fields are purely longitudinal

$B_{(0)}^{z}=i g \epsilon^{i j}\left[A_{1}^{i}, A_{2}^{j}\right]$
(superposition of two pure-gauge potentials is not pure gauge due to non-linear character of non-Abelian theory)
$E_{(1)}^{i}=-\frac{1}{2}\left(\sinh \eta\left[D_{(0)}^{i}, E_{0}\right]+\cosh \eta \epsilon^{i j}\left[D_{(0)}^{j}, B_{0}\right]\right)$
$B_{(1)}^{i}=\frac{1}{2}\left(\cosh \eta \epsilon^{i j}\left[D_{(0)}^{j}, E_{0}\right]-\sinh \eta\left[D_{(0)}^{i}, B_{0}\right]\right)$ (induced by the decrease of longitudinal fields after a short time)
To compute the energy loss and momentum broadening we need the correlators of fields:

$$
\begin{array}{r}
X^{i j}(\mathbf{v})=\frac{g^{2}}{2 N_{c}} \int_{0}^{t} d t^{\prime}\left[\left\langle E_{a}^{i}(t, \mathbf{x}) E_{a}^{j}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle+\epsilon^{j k l} v^{k}\left\langle E_{a}^{i}(t, \mathbf{x}) B_{a}^{l}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle\right. \\
\left.\quad+\epsilon^{i k l} v^{k}\left\langle B_{a}^{l}(t, \mathbf{x}) E_{a}^{i}\left(t, \mathbf{x}^{\prime}\right)\right\rangle+\epsilon^{i k l} \epsilon^{j m n} v^{k} v^{m}\left\langle B_{a}^{l}(t, \mathbf{x}) B_{a}^{n}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle\right]
\end{array}
$$

Correlators of gauge potentials

Potentials of different nuclei are uncorrelated: $\quad\left\langle A_{1 a}^{i} A_{2 b}^{j}\right\rangle=0$
Potentials of the same nuclei are correlated with:

$$
\left\langle\rho_{a}\left(x^{\mp}, \vec{x}_{\perp}\right) \rho_{b}\left(y^{\mp}, \vec{y}_{\perp}\right)\right\rangle=\frac{g^{2}}{N_{c}^{2}-1} \delta_{a b} \lambda\left(x^{\mp}, \vec{x}_{\perp}\right) \delta\left(x^{\mp}-y^{\mp}\right) \delta^{2}\left(\vec{x}_{\perp}-\vec{y}_{\perp}\right) \quad \int d x^{\mp} \lambda\left(x^{\mp}, \vec{x}_{\perp}\right)=\mu\left(\vec{x}_{\perp}\right)
$$

Correlators of gauge fields:

$$
\left\langle A_{a}^{i}\left(\mathbf{x}_{\perp}\right) A_{b}^{j}\left(\mathbf{x}_{\perp}^{\prime}\right)\right\rangle=\delta^{a b}\left(\delta_{\perp}^{i j} C_{1}(r)-\hat{r}^{i} \hat{r}^{j} C_{2}(r)\right)
$$

$C_{1}(r) \equiv \frac{m^{2} K_{0}(m r)}{g^{2} N_{c}\left(m r K_{1}(m r)-1\right)}\left[e^{\frac{g^{4} N_{c} \mu\left(m r K_{1}(m r)-1\right)}{4 \pi m^{2}\left(N_{c}^{2}-1\right)}}-1\right]$
$\mathbf{r} \equiv \mathbf{x}_{\perp}-\mathbf{x}_{\perp}^{\prime}, \quad r \equiv|\mathbf{r}|, \quad \hat{r}^{i} \equiv r^{i} / r$
$K_{0}, K_{1} \quad$ MacDonald functions
$C_{2}(r) \equiv \frac{m^{3} r K_{1}(m r)}{g^{2} N_{c}\left(m r K_{1}(m r)-1\right)}\left[e^{\frac{g^{4} N c \mu\left(m r K_{1}(m r)-1\right)}{4 \pi m^{2}\left(N_{c}^{2}-1\right)}}-1\right]$
$m \approx \Lambda_{\mathrm{QCD}} \approx 200 \mathrm{MeV}$ infrared regulator
$\mu=g^{-4}\left(N_{c}^{2}-1\right) Q_{s}^{2}$ charge density per unit transverse area

Correlators of electric and magnetic fields

Oth order correlators

$$
\begin{aligned}
& M_{E}(r) \equiv 2 C_{1}^{2}(r)-2 C_{1}(r) C_{2}(r)+C_{2}^{2}(r) \\
& M_{B}(r) \equiv 2 C_{1}^{2}(r)-2 C_{1}(r) C_{2}(r)
\end{aligned}
$$

$$
\begin{aligned}
\left\langle E_{a}^{z}\left(\mathbf{x}_{\perp}\right) E_{b}^{z}\left(\mathbf{x}_{\perp}^{\prime}\right)\right\rangle & =g^{2} N_{c} \delta^{a b} M_{E}(r) \\
\left\langle B_{a}^{z}\left(\mathbf{x}_{\perp}\right) B_{b}^{z}\left(\mathbf{x}_{\perp}^{\prime}\right)\right\rangle & =g^{2} N_{c} \delta^{a b} M_{B}(r) \\
\left\langle E_{a}^{z}\left(\mathbf{x}_{\perp}\right) B_{b}^{z}\left(\mathbf{x}_{\perp}^{\prime}\right)\right\rangle & =0
\end{aligned}
$$

1st order correlators

$$
M_{E}^{\prime}(r), M_{B}^{\prime}(r) \longrightarrow \tau^{\prime}\left\langle E_{a}^{0}\left(\mathbf{x}_{\perp}\right) E_{(1) b}^{i}\left(t^{\prime}, \mathbf{x}_{\perp}^{\prime}, z^{\prime}\right)\right\rangle=-\frac{g^{2}}{2} N_{c} \delta^{a b} \hat{r}^{i} z^{\prime} M_{E}^{\prime}(r)
$$

(correlators of three gluon fields vanish)

Energy loss and momentum broadening

$$
\begin{array}{r}
X^{i j}(\mathbf{v})=\frac{g^{2}}{2 N_{c}} \int_{0}^{t} d t^{\prime}\left[\left\langle E_{a}^{i}(t, \mathbf{x}) E_{a}^{j}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle+\epsilon^{j k l} v^{k}\left\langle E_{a}^{i}(t, \mathbf{x}) B_{a}^{l}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle\right. \\
\left.\quad+\epsilon^{i k l} v^{k}\left\langle B_{a}^{l}(t, \mathbf{x}) E_{a}^{i}\left(t, \mathbf{x}^{\prime}\right)\right\rangle+\epsilon^{i k l} \epsilon^{j m n} v^{k} v^{m}\left\langle B_{a}^{l}(t, \mathbf{x}) B_{a}^{n}\left(t^{\prime}, \mathbf{x}^{\prime}\right)\right\rangle\right]
\end{array}
$$

We were able to obtain an explicit analytic form of the tensor:

$$
\begin{aligned}
& X^{i j}(\mathbf{v})=\frac{g^{4}\left(N_{c}^{2}-1\right)}{4} \int_{0}^{t} d t^{\prime}\left\{2 n^{i} n^{j} M_{E}(r)-\left(n^{i} \hat{r}^{j} z^{\prime}-n^{j} \hat{r}^{i} z\right) M_{E}^{\prime}(r)\right. \\
& +\epsilon^{j k l} v^{k}\left(n^{i} n^{n} \epsilon^{l m n} \hat{r}^{m} t^{\prime}+n^{l} n^{n} \epsilon^{i m n} \hat{r}^{m} t\right) M_{E}^{\prime}(r) \\
& +\epsilon^{i k l} v^{k}\left[\epsilon^{j m n} v^{m}\left(2 n^{l} n^{n} M_{B}(r)-\left(n^{l} \hat{r}^{n} z^{\prime}-n^{n} \hat{r}^{l} z\right) M_{B}^{\prime}(r)\right) \quad \mathbf{n}=(0,0,1)\right. \\
& \\
& \left.\left.\quad-\left(n^{l} n^{n} \epsilon^{j m n} \hat{r}^{m} t^{\prime}+n^{j} n^{n} \epsilon^{l m n} \hat{r}^{m} t\right) M_{B}^{\prime}(r)\right]\right\} \\
& \frac{d E}{d x}=-\frac{v}{T} \frac{v^{i} v^{j}}{\mathbf{v}^{2}} X^{i j}(\mathbf{V}) \quad \hat{q}=\frac{2}{v}\left(\delta^{i j}-\frac{v^{i} v^{j}}{\mathbf{v}^{2}}\right) X^{i j}(\mathbf{v})
\end{aligned}
$$

Energy loss and momentum broadening

$$
\begin{aligned}
& \frac{d E}{d x}=-\frac{v_{\|}^{2}}{v T}\left[f_{E}^{0}\left(v_{\perp}\right)+v_{\perp} f_{E}^{1}\left(v_{\perp}\right)\right] \\
& \hat{q}=\frac{2 v_{\perp}^{2}}{v}\left[\frac{f_{E}^{0}\left(v_{\perp}\right)}{v^{2}}+f_{B}^{0}\left(v_{\perp}\right)+\frac{v_{\perp}}{v^{2}} f_{E}^{1}\left(v_{\perp}\right)+\frac{\left(1-v_{\|}^{2}\right)}{v_{\perp}} f_{B}^{1}\left(v_{\perp}\right)\right]
\end{aligned}
$$

$$
\begin{array}{ll}
f_{E, B}^{0}\left(v_{\perp}\right) \equiv \frac{g^{4}\left(N_{c}^{2}-1\right)}{2} \int_{0}^{t} d t^{\prime} M_{E, B}(r) & r=v_{\perp}\left(t-t^{\prime}\right) \\
f_{E, B}^{1}\left(v_{\perp}\right) \equiv \frac{g^{4}\left(N_{c}^{2}-1\right)}{4} \int_{0}^{t} d t^{\prime}\left(t-t^{\prime}\right) M_{E, B}^{\prime}(r) &
\end{array}
$$

$M_{E, B}(r)$ diverges when $r \rightarrow 0 \quad$ (CGC breaks down at small distances.)
regularization procedure: $M^{\mathrm{reg}}(r) \equiv \Theta\left(r_{s}-r\right) M\left(r_{s}\right)+\Theta\left(r-r_{s}\right) M(r)$

$$
r_{s}=Q_{s}^{-1}
$$

Functions $f_{E, B}$

$$
m=200 \mathrm{MeV}, N_{c}=3, g=1, Q_{s}=2 \mathrm{GeV}
$$

$-\mathrm{f}_{\mathrm{B}}{ }^{0}, \mathrm{vp}=0.6$
$\cdots-f_{B}{ }^{1}, v p=0.6$
$-f_{B}{ }^{0}, \mathrm{vp}=1$
$-\mathrm{f}_{\mathrm{B}}{ }^{1}, \mathrm{vp}=1$

Saturation is reached before $t=1 \mathrm{fm} / \mathrm{c}$.
$f_{E, B}^{0}>f_{E, B}^{1} \quad$ for $\quad v_{\perp}>0.73$

Energy loss and momentum broadening

$$
m=200 \mathrm{MeV}, N_{c}=3, g=1, Q_{s}=2 \mathrm{GeV}
$$

energy loss is minimal when HQ moves perpendicularly to the axis
momentum broadening is maximal when HQ moves perpendicularly to the axis

Remarks

saturation value at $v=0.9, \cos \theta=0$

$$
\hat{q}_{\mathrm{LO}}=42 \mathrm{GeV}^{2} / \mathrm{fm} \quad \hat{q}_{\mathrm{LO}+\mathrm{NLO}}=8.5 \mathrm{GeV}^{2} / \mathrm{fm}
$$

momentum broadening inferred from a jet quenching of heavy ion collisions

$$
\hat{q}_{\mathrm{JQ}}: 1.5-7.0 \mathrm{GeV}^{2} / \mathrm{fm}
$$

glasma may provide a significant contribution to jet quenching

- regularization procedure:
we checked a few possibilities - results are not very sensitive to them
- higher order terms and convergence - validity of CGC - work in progress

Summary and conclusions

- Collision terms of the Fokker-Planck equation for HQ transported through glasma were derived
- Energy loss and momentum broadening of HQ were computed
- Both quantities are strongly directionally dependent
- Energy loss is maximal when the heavy quark moves along the collision axis
- Momentum broadening is maximal when the heavy quark moves perpendicularly to the axis
- The values of both transport coefficients are sizeable so the glasma phase may have a large effect on the jet quenching observed in HIC
- Higher order terms have to be carefully studied to draw a firm conclusion

NOTE: many papers use only LO terms, while here we obtained NLO corrections!

