Decoupling the rates of charmonium dissociation and recombination reactions in heavy-ion collisions at LHC energy

Abdulla Abdulsalam

(King Abdulaziz University, Jeddah)

JAN 10-15, 2021

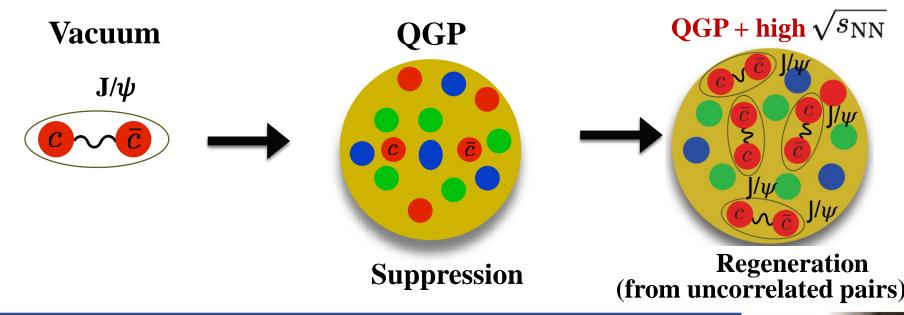
Charmonia in QGP

Charmonia are particles are bound states of $c\bar{c}$

$$\tau_{\mathrm{formation}}^{c\bar{c}} \lesssim \tau_{\mathrm{formation}}^{QGP} < \tau_{\mathrm{life}}^{QGP} < \tau_{\mathrm{decay}}^{\mathrm{quarkonium}}$$

- Color screening of charmonia is expected to prevent the formation of charmonium states in deconfined matter (QGP)
 - ► If screening length $\lambda_D(T) < r_0$ (quarkonium radius)

Matsui and Satz PLB 178 416 (1986), Digal PRD 64 0940150 (2001)



Outline

- ❖ The rate equations of dissociation and recombination are **Decoupled** and solved separately with a 2-dimensional accelerated expansion of fireball volume.
- ❖ To solve the recombination rate equation, we have used an approach of **Bateman solution** which ensures the dissociation of the recombined charmonium in the QGP medium.
- ❖ The modifications of charmonium states are estimated in an expanding QGP with the conditions relevant for Pb+Pb collisions in CMS/ALICE Experiments at LHC.

More details: https://doi.org/10.1016/j.nuclphysa.2020.122130

Charmonia-Survival Probability

- \Box Assuming QGP formed with initial conditions (τ_0, T_0) ,
- \Box The time at which the plasma cools to T_D is

$$\tau_D = \tau_0 \left(\frac{s_0}{s_D} \right) = \tau_0 \left(\frac{T_0}{T_D} \right)^3$$

- As longs as $|\mathbf{r} + \frac{\tau_F \mathbf{p_T}}{M}| > r_D$, quarkonium formation will be suppressed. τ_F is formation time.
- The survival probability of quarkonia becomes

$$S(N_{\text{part}}) = \int S(p_T, R(N_{\text{part}})) dp_T$$

• The probability of charmonium formation in deconfinement medium is

$$N_{\psi}/N_{c\overline{c}} \approx N_{c\overline{c}}/N_{ch} \approx P_{c \to \psi}$$

More details: https://doi.org/10.1016/j.nuclphysa.2020.122130

Decoupling dissociation and recombination

- The recombination mechanism is the inverse process of thermal gluon dissociation of charmonium states, that a free charm quark and anti-quark are captured in the ψ bound state, emitting a color octet gluon.
- According to Boltzmann equation, the time evolution of charm quarks and charmonium states in the deconfined region is

$$\frac{dN_{\psi}}{d\tau} = \Gamma_F N_c N_{\overline{c}} [V(\tau)]^{-1} - \Gamma_D N_{\psi} n_g$$

- Decoupling: Motivation
 - ✓ The gluon dissociation of charmonium is significant at RHIC and LHC energies.
 - ✓ The recombination of charmonium is prominent only when number of charm and anti-charm quarks (pairs) are produced in large amount $\sim O(100)$.
 - ✓ The number of charm quarks/pairs produced at LHC energy is O(100) times more than that at RHIC energy collisions, indicating that the recombination is an active process to be taken well separately.

Decoupling dissociation and recombination

Dissociation of charmonium:

$$\frac{dN_{\psi}^{D}}{d\tau} = -\Gamma_{D}N_{\psi}(0) n_{g}$$

Then the number of charmonium states survived is (solution)

$$N_{\psi}^{D} = N_{\psi}(0) \ exp^{-\int_{\tau_0}^{\tau_f} \Gamma_D n_g d\tau}$$

Formation/Recombination of charmonium:

$$\frac{dN_{\psi}^{F}}{d\tau} = \Gamma_{F} N_{c\overline{c}}^{2}(Tot)[V(\tau)]^{-1} - \Gamma_{D} N_{\psi} n_{g}$$

- ✓ The formation equation is analogous to that of radioactive decay chain reaction.
- ✓ The solution of such differential equation can be found by **Bateman equation** which take into account the effects of correlated mechanism of recombination from two charm quarks and the dissociation of newly formed pairs. Then the solution is

$$\begin{split} N_{\psi}^{F} &= \frac{\Lambda_{F}}{\Lambda_{D} - \Lambda_{F}} \, N_{c\overline{c}}(Tot) [e^{-\int_{\tau_{0}}^{\tau_{QGP}} \Gamma_{F} N_{c\overline{c}}^{2}(Tot)[V(\tau)]^{-1} d\tau} - e^{-\int_{\tau_{0}}^{\tau_{QGP}} \Gamma_{D} n_{g} d\tau}] \\ &+ N_{c\overline{c}}^{Diss} \, e^{-\int_{\tau_{0}}^{\tau_{QGP}} \Gamma_{D} n_{g} d\tau}, \end{split}$$

with
$$\Lambda_F = \int_{\tau_0}^{\tau_{QGP}} \Gamma_F N_{c\overline{c}}^2 (Tot) [V(\tau)]^{-1} d\tau$$
 and $\Lambda_D = \int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau$.

The survival

• To get the total number of ψ survived at the end of QGP lifetime, the number of ψ survived/recombined from the respective reactions are added together.

$$\begin{split} N_{\psi}(\tau_{QGP}) &= \frac{\Lambda_F}{\Lambda_D - \Lambda_F} \, N_{c\overline{c}}(Tot) [e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_F N_{c\overline{c}}^2(Tot)[V(\tau)]^{-1} d\tau} - e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau}] \\ &+ N_{c\overline{c}}^{Diss} \, e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau} \\ &+ N_{\psi}(0) \, e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau} . \end{split}$$

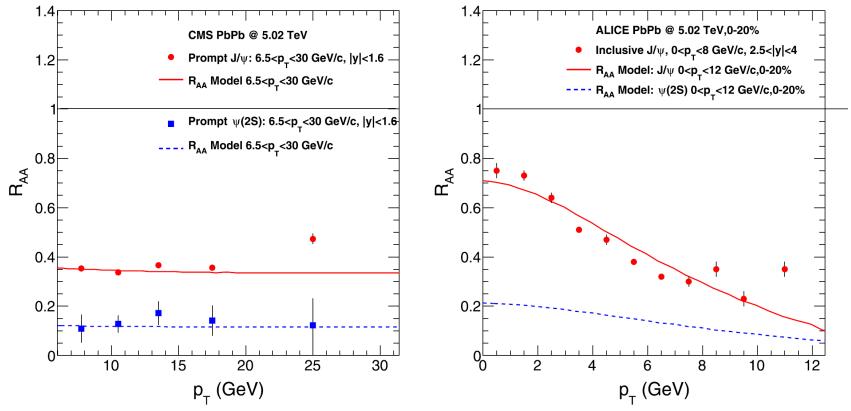
• The total survival probability of the charmonium in the medium

$$\begin{split} S(p_T, R(N_{part})) &= \frac{1}{N_{\psi}(0) + N_{c\overline{c}}(Tot)} \int\limits_{0}^{R} dr \ r \ \rho(r) \ \phi(r, p_T) \\ & (\frac{\Lambda_F}{\Lambda_D - \Lambda_F} N_{c\overline{c}}(Tot) [e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_F N_{c\overline{c}}^2(Tot) [V(\tau)]^{-1} d\tau} - e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau}]) \\ & N_{\psi}(0) e^{-\int_{\tau_0}^{\tau_{QGP}} \Gamma_D n_g d\tau} \end{split}$$

More details: https://doi.org/10.1016/j.nuclphysa.2020.122130

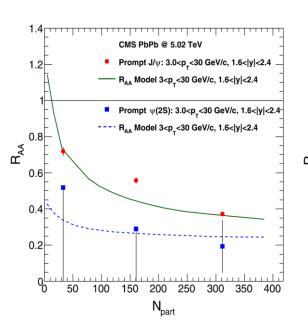
Nuclear Modification Factor- R_{AA}

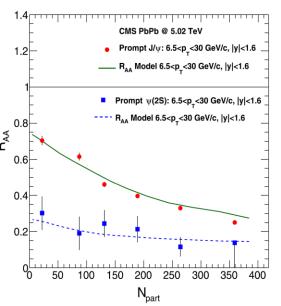
• The nuclear modification factor is obtained from survival probability taking into account the feed-down corrections

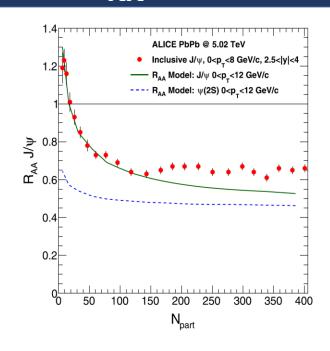


- The solid and dashed lines are the model calculations for in the respective pT regions.
- The model replicates the measured R_{AA} (Left-CMS, Right-ALICE) except in last bin, may be because of less energy loss of high pT charmonia.

Nuclear Modification Factor- R_{AA}







Right figure: The solid line (present model calculation) agrees well with the measured data (ALICE Experiment) keeping in mind that the measured R_{AA} is for inclusive J/ ψ while the model calculation is for prompt J/ ψ and ψ (2S).

Left two figures: The model reproduces well the measured nuclear modification factors (CMS Experiment) of both J/ψ and $\psi(2S)$ in all centralities.

This study is published in NPA:

https://doi.org/10.1016/j.nuclphysa.2020.122130

Thank you