SMOG2 upgrade at LHCb

- **SMOG**: System for Measuring Overlap with Gas
- **SMOG2**: Storage Cell for the gas upstream of the nominal IP (z in [-500, -300] mm) and precisely calibrated Gas Feed System.
 - Gas density increased by up to two orders of magnitude —> much higher luminosity
 - More gas targets: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- **pp** and SMOG2 separate luminous regions —> simultaneous pp-SMOG2 data-taking.
- $\sqrt{s_{\text{NN}}} = 69$-110 GeV between SPS & RHIC
- $-3.0 < y^* < 0$
- Access nPDF anti-shadowing region

![Diagram of LHCb experiment](image)
SMOG2 upgrade at LHCb

- SMOG: System for Measuring Overlap with Gas
- SMOG2: Storage Cell for the gas upstream of the nominal IP (z in [-500, -300] mm) and precisely calibrated Gas Feed System.
 - Gas density increased by up to two orders of magnitude —> much higher luminosity
 - More gas targets: H₂, D₂, He, N₂, O₂, Ne, Ar, Kr, Xe
- \(pp \) and SMOG2 separate luminous regions —> simultaneous \(pp \)-SMOG2 data-taking.
- \(s_{NN} = 69-110 \) GeV between SPS & RHIC
- \(-3.0 < y^* < 0 \)
- Access nPDF anti-shadowing region
Statistics in 1 year data taking

simultaneous \(pp \)-SMOG2 data-taking

<table>
<thead>
<tr>
<th>Storage cell assumptions</th>
<th>gas type</th>
<th>gas flow (\text{s}^{-1})</th>
<th>peak density (\text{cm}^{-3})</th>
<th>areal density (\text{cm}^{-2})</th>
<th>time per year (\text{s})</th>
<th>int. lum. (\text{pb}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMOG2 SC</td>
<td>He</td>
<td>(1.1 \times 10^{16})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(3 \times 10^3)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Ne</td>
<td>(3.4 \times 10^{15})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(3 \times 10^3)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Ar</td>
<td>(2.4 \times 10^{15})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(2.5 \times 10^6)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Kr</td>
<td>(8.5 \times 10^{14})</td>
<td>(5 \times 10^{11})</td>
<td>(5 \times 10^{12})</td>
<td>(1.7 \times 10^6)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>Xe</td>
<td>(6.8 \times 10^{14})</td>
<td>(5 \times 10^{11})</td>
<td>(5 \times 10^{12})</td>
<td>(1.7 \times 10^6)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>H(_2)</td>
<td>(1.1 \times 10^{16})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(5 \times 10^6)</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>D(_2)</td>
<td>(7.8 \times 10^{15})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(3 \times 10^5)</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>O(_2)</td>
<td>(2.7 \times 10^{15})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(3 \times 10^3)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>N(_2)</td>
<td>(3.4 \times 10^{15})</td>
<td>(10^{12})</td>
<td>(10^{13})</td>
<td>(3 \times 10^3)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Int. Lumi.

80\(\text{pb}\)

Sys. error of \(J/\Psi \) xsection

\~3\%

SMOG2 pAr @ 115 GeV

<table>
<thead>
<tr>
<th></th>
<th>yield</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(J/\Psi)</td>
<td></td>
<td>28 M</td>
<td></td>
</tr>
<tr>
<td>(D^0)</td>
<td></td>
<td>280 M</td>
<td></td>
</tr>
<tr>
<td>(\Lambda_c)</td>
<td></td>
<td>2.8 M</td>
<td></td>
</tr>
<tr>
<td>(\Psi')</td>
<td></td>
<td>280 k</td>
<td></td>
</tr>
<tr>
<td>(\Upsilon(1S))</td>
<td></td>
<td>24 k</td>
<td></td>
</tr>
<tr>
<td>(DY \mu^+\mu^-)</td>
<td></td>
<td>24 k</td>
<td></td>
</tr>
</tbody>
</table>
Physics programs and future measurements

• **Fixed Target Mode: SMOG2**

• **Physics:**
 • Intrinsic heavy-quark
 • *p*-Gas collisions: nPDFs, gluon anti-shadowing at large x, cold nuclear matter effects
 • Pb-Gas collisions: QGP formation, rapidity scan at lower energy, quarkonium sequential suppression

• **Measurements:**
 • Anti-proton production
 • ρ in Central Exclusive Production
 • $X(3872)/\psi(2S)$ ratio in pHe, pAr, pXe…
 • $\psi(2S) / J/\psi$ ratio in pHe, pAr, pXe…
 • Strangeness production in pHe, pAr, pXe…
 • Λ_c^+ / D^0 ratio in pHe, pAr, pXe…
 • Drell-Yan

• **Collider Mode**
 • O-O collisions: do not expect centrality limitation. Simultaneous with SMOG2?
 • *p*-O collisions: study elemental composition of high energy cosmic rays
 • Help understand the forward particle flux in hadron-nucleus interactions at TeV scale
 • Help resolve the Muon Puzzle in the cosmic-ray induced air showers.

$\rho \psi(2S) \psi(1S) \Lambda_c^+ + c \Lambda_c^+ + c / D^0$

No centrality limitation!