

Software Plans and Challenges for SuperCDMS

Ben Loer
Pacific Northwest National Laboratory

PNNL is operated by Battelle for the U.S. Department of Energy

- Outline
- Brief intro to direct dark matter detection and SuperCDMS technology
- Overview of the SuperCDMS software stack
- Peculiarities of data and analysis
- Current development and needs
- NB:
 - I am probably misusing lots of common HEP terms
 - "You're doing that wrong" is totally helpful feedback and encouraged

Evidence for dark matter

IRIS-HEP Topical Meeting

Dark Matter Direct Detection

- Assume dark matter is a gas in thermal equilibrium
 - Velocities follow a Maxwell-Boltzmann distribution with v_{avg} ~ 220 km/s
 - Truncated at galactic escape velocity (~600 km/s)
- Boost into lab frame due to sun's motion relative to galaxy
 - Earth's rotation about the sun introduces a small annual modulation that is usually averaged out
- DM interactions generate nuclear recoils in target
 - A² coherent enhancement at low momentum transfer
 - Looks like a neutron (minus multiple scatters and thermal capture)
- Result:
 - exponential-ish spectrum up to O(10) keV depending on DM mass
 - Current limits ~1 event /100 kg*years

WIMP-induced Nuclear Recoil Spectrum

Direct Detection Landscape

IRIS-HEP Topical Meeting

, 2018, Run 3, 36 kg-d
3 2018
ISS-LM
0, 2018, 102.8 kg-d
-100, 2018, 6300 kg-d
2012, flat efficiency model
2012, stage 1 & 2 merged
C4F10, 2017, 231.4 kg-d
, 2017, 1404 kg-d
2018
II, 2017, 54 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d -III, 2019, 3.64 kg-d

Direct Detection Landscape

IRIS-HEP Topical Meeting

, 2018, Run 3, 36 kg-d
3 2018
ISS-LM
0, 2018, 102.8 kg-d
-100, 2018, 6300 kg-d
2012, flat efficiency model
2012, stage 1 & 2 merged
C4F10, 2017, 231.4 kg-d
, 2017, 1404 kg-d
2018
II, 2017, 54 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d -III, 2019, 3.64 kg-d

IRIS-HEP Topical Meeting

, 2018, Run 3, 36 kg-d
3 2018
ISS-LM
0, 2018, 102.8 kg-d
-100, 2018, 6300 kg-d
2012, flat efficiency model
2012, stage 1 & 2 merged
C4F10, 2017, 231.4 kg-d
, 2017, 1404 kg-d
2018
II, 2017, 54 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d
II, 2017, 54 ton-d 9, Bremsstrahlung (Heavy scalar), 1.4e4 kg-d II, 2011, second science run, 1344kg-d T, 2017, 1 t-yr 2016, 0.6 kg-d 0, 2013, 39.5 kg-d -50, 2018 500, 2017, 9.87 ton-d -III, 2019, 3.64 kg-d

SuperCDMS Detectors

- 100x30 mm pure Ge or Si crystals
- Athermal phonons collected into superconducting transition edge sensors (TES), read by SQUID amplifiers
- Extremely sensitive to noise and environment
- HV detectors convert free charge to additional phonons with high gain and low noise
 -> <1 e- threshold
- iZIP detectors read ionization
 -> q/E discrimination

HV

SuperCDMS Software Stack

Raw data reconstruction

SuperCDMS Collaboration

- ~25 institutions, ~125 members
- ~5 FTEs total for all software infrastructure, split between
 - DAQ
 - Simulations
 - Data processing and analysis environment

Data Acquisition

- System built on MIDAS DAQ library from TRIUMF
 - Used by DEAP3600, T2K, g-2
 - Independent processes communicate through shared memory buffers and network **RPC** calls
 - State and configuration handled by central Online Database (ODB)
- Detector channels read by Detector Control and Readout Cards (DCRCs)
 - Custom board with firmware design similar to mu2e SiPM boards
 - Signals digitized into 6s long circular buffer: sets max trigger + readout time
 - L1 triggers generated by digital FIR filter
- L2 trigger process collects L1 triggers from DCRCs, requests event readout
- Event builder collects and orders traces for writing to disk

Data volumes

- 24 detectors x 12 (16) channels for HV (iZIP) detectors
- ~0.14 MB (uncompressed) per detector per trigger
- Highest data rate during calibration, ~5 Hz per detector ->O(10) MB/s
- O(100) TB/year raw data, similar amount of simulation data
- O(10) TB/year ntuples
 - Just barely above threshold where a single server is impractical

Simulations

- GEANT4 particle transport
 - Calibration sources, radioactive backgrounds, fast neutrons, cosmic rays
- Custom code to simulate charge and phonon propagation in crystals
 - Initially written in Matlab
 - Newer GEANT4 Condensed Matter Package (<u>G4CMP</u>) to replace Matlab soon
 - Thousands of times more computation required than particle transport
- Custom code to simulate analog electronics and digitization
- Output converted to raw data format
 - Can include sampling noise from particular dataset
 - Use same reconstruction as raw data

rays rystals

latlab soon ort

2019-10-09

12

Reconstruction

- C++, requires ROOT, BOOST, BLAS
 - Now transitioning to cmake due to BLAS being so annoying
- 3 stages, 2 output files per run:
 - Calculate noise PSDs for each channel during run (~3 hours)
 - Do slow calculations (e.g. N-dim Optimum Filter fits)
 - Do fast calculations (e.g. apply calibrations to convert from SQUID amps to keV)
- Each file contains a TTree for global quantities and one Ttree for each detector
 - Loading all data at once requires "friending" across 2(N+1)=50 trees
 - But most analysis is done detector-by-detector, and only uses stage 3 ntuples

amps to keV) for each

)

2019-10-09 13

Data Catalog

- Service developed by SLAC for LSST
- Browser and REST API, SQL under the hood
- Define arbitrary metadata for each data type
- Tracks locations and metadata only; does not manage data transfer, etc
- Scanner process at SLAC verifies file locations, etc

Version: 1.13-SNAPSHOT User: bloer . (Switch|Logout) | Jira Project: CDMS | CTA | EXO | SID | LSST-CAMERA | LSST-DESC | LSST-DM | SLAC-PAC-LSST | SRS | SSRL Mode: [Prod | Dev | Test] View: [Tree . Data Types . File Formats . Messages . Admin . Problems]

Туре ≑	Files ≑	Events ≑	Size ≑	Created (UTC)	Links
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download
Dataset	1				Download

Folder /CDMS/CUTE/R0/Raw/23190626_1931

¢	Туре 🔶
Not set	STRING
I install underground	STRING
36	NUMBER
1	NUMBER

End-user analysis

- Planning structure now
- Previous model: most users logged into a single server at Stanford, ran interactive Matlab sessions
- If possible, want to keep to mostly-interactive analysis (i.e. not have to submit jobs for absolutely everything)
- Current plan to push everyone to python, load our ROOT data into pandas **DataFrames**
- Hope to use JupyterHub to provide environment, but experiencing problems with our current implementation

Software Challenges

IRIS-HEP Topical Meeting

Challenge: Local data store

- Ntuples available at Site A
- Users want to do (interactive) analysis at Site B
- On demand, copy (many) files from Site A to Site B
 - Sync/lock mechanism in case multiple users try to copy same files at the same time
- Persistent file store, not copy one file at a time to scratch
 - Allocate a quota, and refuse or do cleanup if transfer too large
 - (Automatically) remove oldest accessed files to free up space

Challenge: IO reduction (skims)

- During early analysis, workflow is: load whole nuples -> develop basic cuts (e.g. threshold, reconstruction χ^2)
- Once basic cuts exist, want to apply cuts before loading data
 - Skip reading events just to immediately discard
 - Skip having to read otherwise-unneeded branches (e.g. chisq)
- Skims (copy of files with only events passing cuts) are efficient, but
 - Cuts tend to be tweaked over time, leading to lots of copies
 - What combinations of cuts to create skims for? New cuts added constantly
- Something like ROOT TEntryList that only reads listed entries would be ideal

Challenge: Horizontal chunk synchronization

- For much of analysis, each detector is treated independently, e.g. quality cuts
- Each detector's ntuples stored in a separate tree
- After thresholds, skims, etc, trees contain different sets of events
- How to match events to do cross-detector searches, e.g. for crosstalk or coincident alpha/daughter hits?
 - Database: joins
 - ROOT: TTreeIndex
 - Pandas: join on DataFrame index if dataset fits into memory

DetA	DetB
1	2
4	3
5	4
9	7
12	11
13	14
14	16
16	18
18	22
24	24
28	27
29	28
32	29

DetA	DetB
1	-
-	2
-	3
4	4
5	-
-	7
9	-
-	11
12	-
13	-
14	14
16	16
18	18
-	22
24	24
-	27
28	28
29	29
32	-

DetA	Det
4	4
14	14
16	16
18	18
24	24
28	28
29	29

2019-10-09

20

Challenge: Horizontal chunk synchronization

- For large datasets, uproot and root_pandas both iterate over smaller chunks of data
- BUT: if chunk boundaries misaligned, not all events present for join

DetA	DetB
1	2
4	3
5	4
9	7
12	11
13	14
14	16
16	18
18	22
24	24
28	27
29	28
32	29

DetA	DetB
1	2
4	3
5	4
9	7

DetA	DetB
12	11
13	14
14	16
16	18

DetA	DetB
18	22
24	24
28	27
29	28

Challenge: Global software releases

- Multiple software packages with complex dependencies
 - E.g. recon v2.1 handles new feature of simulation v5.3 that requires geant v10.6
- Want single CDMS global software version to fully specify everything for documentation and reproducibility
- Produce and distribute binaries for multiple platforms (SL6, CentOS7) via cvmfs
- Old and new releases side-by-side, without multiple copies of packages with slower release cycle
 - But also need to keep track of breaking dependencies, e.g. ROOT
- Currently being built on a rickety tower of symlinks and custom bash scripts...

Challenge: resource management on interactive nodes

- SLAC hosts an experimental JupyterHub server
 - Web interface to spawn per-user JupyerLab instance
 - Environment defined by Docker image: allows backward compatibility
- Heavy use; frequent instability from lack of memory, etc
- Exploring self-hosting, dedicated hardware, etc

Spawner Options

SuperCDMS Images

CDMS JupyterLab v 1.6 CDMS JupyterLab v 1.7 Unstable

Cryo-EM CryoSPARC Images

CryoSPARC v2.5.0-5 (GPU)

ATLAS Images

OATLAS Jupyterlab Image - v01

LSST Isstsgre/sciplat-lab Images

Logout

Challenge: Ease of access to member institution computing resources

- Many CDMS member institutions have local small-to-medium sized computing clusters
- Occasionally want to leverage all of it at once
 - e.g., reprocess 3 years' worth of raw data with new/improved algorithm
- Handled by manually dividing jobs into separate lists, each managed by a user on their local cluster
- Explored DIRAC to have a central interface to all computing resources, but lack the manpower to implement it

Thank you

IRIS-HEP Topical Meeting

