Javier Resta López University of Liverpool The Cockcroft Institute

## Introduction

## $\square$ Accelerator Physics



| RF design | Non-linear dynamics | Magnet design |  |
| :--- | :--- | :--- | :--- |
| Optical design | Collective effects | Operations |  |

## Lorentz force

- A charged particle moving with velocity $\boldsymbol{v}$ through an electro-magnetic field experiences a force

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

- The second term is always perpendicular to the direction of motion, so it does not give any longitudinal acceleration and it does not increase the energy of the particle.
- Acceleration has to be done by an electric field E


## Electrostatic acceleration

vacuum envelope


Electrostatic Field:
Energy gain: $W=e \Delta V$

Limitation: insulation problems maximum high voltage ( $\sim 10 \mathrm{MV}$ )

Used for first stage of acceleration: particle sources, electron guns, x-ray tubes


750 kV Cockroft-Walton generator at Fermilab (Proton source)

## Radio-Frequency (RF)

## - Ising-Wideröe type structure


R. Wideröe

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF generator, as shown above, lead to an alternating electric field polarity

## Synchronism condition

$$
l_{i}=\frac{v_{i} T_{R F}}{2}=\frac{\beta_{i} \lambda_{R F}}{2}
$$

$$
v_{i}=\text { particle velocity }
$$

$$
T_{R F}=\text { RF period }
$$

## Radio-Frequency (RF)

- Alvarez type structure


Used for proton and ions ( $50-200 \mathrm{MeV}$ ), $f_{R F} \sim 200 \mathrm{MHz}$

## Radio-Frequency (RF)

## $\square$ Resonant Cavities

- Higher operating frequency.
- The power lost by radiation, due to circulating currents on the electrodes, is proportional to the RF frequency.
- Solution: enclosing the system in a cavity whose resonant frequency matches the RF generator frequency.

- Note however that joule losses will occur in the cavity walls (unless made of superconducting materials)


## Radio-Frequency (RF)

## - Resonant Cavities

## Standing wave linear accelerator

 $\pi / 2$ - mode of the E010 field pattern

Field gradient: $20 \mathrm{MeV} / \mathrm{m}$


CST $^{\circledR}$ simulation examples: https//www.cst.com/Applications

## Synchronous phase

## - Phase stability (linac)

- Cavity set up so that particle at the centre of bunch (synchronous particle) acquires just the right amount of energy $\Delta E=e V_{0} \sin \Phi_{s}$


Stable phase region

$$
0<\Phi_{s}<\frac{\pi}{2}
$$

- Particles arriving early $\left(N_{1}\right)$ see $\Phi<\Phi_{s}$ and will gain less energy. In the next gap it will appear closer to particle $\mathrm{P}_{1}$ (synchronous particle)
- Particles arriving late $\left(\mathrm{M}_{1}\right)$ see $\Phi>\Phi_{s}$ and reduce its delay compared to $\mathrm{P}_{1}$


## Cyclotron

Used for protons, ions


9

## $\mathrm{B}=$ constant

$\omega_{R F}=$ constant

E. Lawrence

## Synchronism condition

$$
\begin{aligned}
\omega_{s} & =\omega_{R F} \\
2 \pi \rho & =v_{s} T_{R F}
\end{aligned}
$$

$$
\omega_{s}=\frac{q B}{m_{0} \gamma}
$$

As long as $v_{s} \ll c$ and $\gamma \approx 1$ the synchronism conditions stays fulfilled, and the revolution frequency does not depend on the radius

For higher energies ... ?

## Synchrocyclotron

In order to keep the synchronism at higher energies, one has to decrease $\omega_{R F}$ during the acceleration cycle according to the relativistic $r(t)$

$$
\omega_{R F}(t)=\omega_{s}(t)=\frac{q B}{m_{0} \gamma(t)}
$$

It can accelerate protons up to around 500 MeV .

Limitation due to the size of the magnet

## Synchrotron

Synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn.
That implies the following operating conditions:


$$
\begin{aligned}
& e \hat{V} \sin \Phi \longrightarrow \text { Energy gain per turn } \\
& \Phi=\Phi_{s}=c t e \longrightarrow \text { Synchronous particle } \\
& \omega_{R F}=h \omega_{r} \longrightarrow \begin{array}{c}
\text { RF synchronism } \\
\text { (h - harmonic number) }
\end{array} \\
& \rho=c t e \quad R=c t e \longrightarrow \text { Constant orbit } \\
& B \rho=P / e \Rightarrow B \longrightarrow \text { Variable magnetic field }
\end{aligned}
$$

If $v \approx c, \omega_{r}$ hence $\omega_{R F}$ remain constant (ultra-relativistic regime)

## ELENA ring

- A compact synchrotron to decelerate antiprotons
$\square^{\text {minection a } 5.3 \mathrm{MeV}}$ ELENA cycle


- Remember the Lorentz force

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

- We have used E to accelerate/decelerate particles
- Now we shall use B to deflect particles as we really benefit from the presence of the velocity in the Lorentz force
- At high velocities magnets are used to deflect particles
- Although at low velocities electric fields may be more efficient (e.g. electrostatic elements are used in the ELENA's transfer line to experiments)


## Coordinate system

Coordinates w.r.t. the design orbit

Let's consider a local segment of one particle's trajectory


Paraxial approximation: we will assume the deviation of particle coordinates from the design orbit is small, so $\mathrm{x}, \mathrm{y}$ << bending radius ( $\rho$ )

## Coordinate system



The state of a particle (phase space) represented with a 6-D vector

$$
\left(x, x^{\prime}, y, y^{\prime}, z=s-\beta c t, \delta=\Delta p / p_{0}\right)
$$

with

$$
x^{\prime}=\frac{d x}{d s}=\frac{d x d t}{d t d s}=\frac{p_{x}}{p_{z}} ; \quad y^{\prime}=\frac{d y}{d s}=\frac{d y d t}{d t d s}=\frac{p_{y}}{p_{z}}
$$

## Magnetic field

## $\square$ Taylor expansion:

$$
B_{y}(x)=B_{y 0}+\frac{d B_{y}}{d x} x+\frac{1}{2} \frac{d^{2} B_{y}}{d x^{2}} x^{2}+\frac{1}{3!} \frac{d^{3} B_{y}}{d x^{3}} x^{3}+\ldots
$$

Magnet strengths normalized to the beam rigidity:

$$
B_{y}(x)=B \rho \sum_{n=1}^{\infty} \frac{k_{n-1} x^{n-1}}{(n-1)!}
$$



## Bending

## $\square$ Dipole

If we want to deflect particles

$$
F=q v B
$$

We equate this to the centripetal force

$$
F=\frac{\gamma m v^{2}}{\rho}
$$

$$
\frac{1}{\rho}\left[\mathrm{~m}^{-1}\right]=0.2998 \frac{B[\mathrm{~T}]}{p[\mathrm{GeV} / c]}
$$

Rigidity: $B \rho=\frac{p}{q}$ (for $q=e$ )

$$
B \rho[\mathrm{~T} \cdot m]=3.3356 \cdot p[\mathrm{GeV} / c]
$$

ELENA ring dipole


## Focusing/defocusing

## $\square$ Quadrupole

- Constant gradient $g=-\frac{d B_{y}}{d x}$
- Focusing forces increase linearly with displacement
- Magnetic lenses are focusing in one plane but are defocusing in the orthogonal plane


Normalised strength:

$$
k_{1}\left[\mathrm{~m}^{-2}\right]=\frac{g}{p / e}\left[\mathrm{~m}^{-2}\right]=0.2998 \frac{g[\mathrm{~T} / \mathrm{m}]}{p[\mathrm{GeV} / c]}
$$

ELENA ring quadrupole


## Hill's equation

- Basic equation of motion for a particle in an accelerator

$$
x^{\prime \prime}(s)+K(s) x(s)=0
$$

Motion with periodic focusing properties


Compare with a simple harmonic oscillator with restoring force $F=-k x$

- with a restoring force $\neq$ const
- K(s) depends on longitudinal position $s$
- $K(s+L)=K(s)$ periodic function, where $L$ is the "lattice period"


## Hill's Equation

- Equation of transverse motion
- Drift:

$$
x^{\prime \prime}=0, \quad y^{\prime \prime}=0
$$

- Solenoid: $\quad x^{\prime \prime}+2 k y^{\prime}+k^{\prime} y=0, \quad y^{\prime \prime}-2 k x^{\prime}-k^{\prime} x=0$
- Quadrupole: $x^{\prime \prime}+k x=0, \quad y^{\prime \prime}-k y=0$
- Dipole:

$$
x^{\prime \prime}+\frac{1}{\rho^{2}} x=0, \quad y^{\prime \prime}=0
$$

- Sextupole: $\quad x^{\prime \prime}+k\left(x^{2}-y^{2}\right)=0, \quad y^{\prime \prime}-2 k x y=0$
- Hill's Equation: $x^{\prime \prime}+k_{x}(s) x=0, \quad y^{\prime \prime}+k_{y}(s) y=0$


## Focusing quadrupole

- For similarity with harmonic oscillator, considering $K=$ const.
- Horizontal focusing quadrupole (defocusing in vertical plane), $\boldsymbol{K}>\mathbf{0}$ :

$$
\begin{aligned}
x(s) & =x(0) \cos (\sqrt{K} s)+\frac{x^{\prime}(0)}{\sqrt{K}} \sin (\sqrt{K} s) \\
x^{\prime}(s) & =-x(0) \sqrt{K} \sin (\sqrt{K} s)+x^{\prime}(0) \cos (\sqrt{K} s)
\end{aligned}
$$

- For convenience we can use a matrix formalism:
$\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{cc}\cos (\sqrt{K} s) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} s) \\ -\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)\end{array}\right)\binom{x(0)}{x^{\prime}(0)} \xrightarrow{\substack{s=0 \\ \hline}}$


## Defocusing quadrupole

- For similarity with harmonic oscillator, considering $K=$ const.
- Horizontal defocusing quadrupole (focusing in vertical plane), $\boldsymbol{K}<\mathbf{0}$ :

$$
\begin{aligned}
x(s) & =x(0) \cosh (\sqrt{|K|} s)+\frac{x^{\prime}(0)}{\sqrt{|K|}} \sinh (\sqrt{|K|} s) \\
x^{\prime}(s) & =x(0) \sqrt{|K|} \sinh (\sqrt{|K|} s)+x^{\prime}(0) \cosh (\sqrt{|K|} s)
\end{aligned}
$$

- Matrix formalism:



## Drift

- For $\boldsymbol{K}=\mathbf{0}$, and no further magnetic elements, we have a drift space:

$$
\begin{aligned}
x(s) & =x(0)+\left(s-s_{0}\right) x^{\prime}(0)=x(0)+L x^{\prime}(0) \\
x^{\prime}(s) & =x^{\prime}(0)
\end{aligned}
$$

- Position changes if particle has a slope which remains unchanged.


## Thin lens approximation

- For a focusing quadrupole $(K>0)$

$$
M_{\mathrm{QF}}=\left(\begin{array}{cc}
\cos (\sqrt{K} L) & \frac{1}{\sqrt{K}} \sin (\sqrt{K} L) \\
-\sqrt{K} \sin (\sqrt{K} L) & \cos (\sqrt{K} L)
\end{array}\right)
$$

- For a defocusing quadrupole ( $K<0$ )

$$
M_{\mathrm{QD}}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} L) & \frac{1}{\sqrt{K}} \sinh (\sqrt{|K|} L) \\
\sqrt{|K|} \sinh (\sqrt{|K|} L) & \cosh (\sqrt{|K|} L)
\end{array}\right)
$$

- In the limit $L \rightarrow 0$, and $K L=$ const.

Focal length

$$
M_{\mathrm{QF}, \mathrm{QD}}=\left(\begin{array}{cc}
1 & 0 \\
-K L & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \quad f=\frac{1}{K L}
$$

- Note that the sign of $K$ or $f$ is now absorbed inside the symbol
- In the other plane, focusing becomes defocusing and vice versa


## Joining elements

For an arbitrary number of transport elements, each with a constant, but different, $K_{n}$, we have
$M\left(s_{n} \mid s_{0}\right)=M\left(s_{n} \mid s_{n-1}\right) \ldots M\left(s_{3} \mid s_{2}\right) \cdot M\left(s_{2} \mid s_{1}\right) \cdot \underbrace{M\left(s_{1} \mid s_{0}\right.})$


$$
\binom{x_{n}}{x_{n}^{\prime}}=M\left(s_{n} \mid s_{0}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

from $\mathbf{s}_{\mathbf{0}}$ to $\mathbf{s}_{\mathbf{n}}$

Thus by breaking up the parameter $K(s)$ into piecewise constant chunks, $K(s)=\{K 1$, $K 2, \ldots K n\}$, we have found a useful method for finding the particle transport equation through a long section of beamline with many elements.

## Betatron motion

- General solution of Hill's eq. for on-momentum linear motion of a particle:

$$
\begin{aligned}
x(s) & =\sqrt{\epsilon \beta(s)} \cos \left(\psi(s)+\phi_{0}\right) \\
x^{\prime}(s) & =\sqrt{\frac{\epsilon}{\beta(s)}}\left(\sin \left(\psi(s)+\phi_{0}\right)+\alpha(s) \cos \left(\psi(s)+\phi_{0}\right)\right)
\end{aligned}
$$

Twiss parameters: $\quad \beta(s), \quad \alpha(s)=-\frac{\beta^{\prime}(s)}{2}, \quad \gamma(s)=\frac{1+\alpha(s)^{2}}{\beta(s)}$
Betatron phase: $\quad \psi(s)=\int \frac{d s}{\beta(s)}$
Tune (in a ring): number of betatron oscillations per turn, or phase advance per turn in units of $2 \pi$

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

## Phase space

$\square$ The twiss parameters $\alpha, \beta, \gamma$ have a geometric meaning
Phase space ellipse
$\gamma(s) x^{2}+2 \alpha(s) x x^{\prime}+\beta(s) x^{2}=\epsilon$ Area of ellipse $=\pi \epsilon$

Courant-Snyder invariant: $\epsilon$

Beam envelope

$$
E(s)=\sqrt{\epsilon \beta(s)}
$$

Beam divergence

$$
A(s)=\sqrt{\epsilon \gamma(s)}
$$



## Off-momentum particles



Recall that the magnetic rigidity is $B \rho=\frac{p}{q}$ and for off-momentum particles:

$$
B(\rho+\Delta \rho)=\frac{p_{0}+\Delta p}{q} \Rightarrow \frac{\Delta \rho}{\rho}=\frac{\Delta p}{p_{0}}
$$

Consider the effective length of the dipole unchanged:
$\theta \rho=l_{\text {eff }}=$ const. $\Rightarrow \rho \Delta \theta+\theta \Delta \rho=0 \Rightarrow \frac{\Delta \theta}{\theta}=-\frac{\Delta \rho}{\rho}=-\frac{\Delta p}{p_{0}}$
Off-momentum particles get different deflection (different orbit):

$$
\Delta \theta=-\theta \frac{\Delta p}{p_{0}}
$$

## Dispersion

## - Inhomogeneous Hill's equation

$$
x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}}
$$

The solution is a sum of the homogeneous equation (on-momentum) and the inhomogeneous (off-momentum):

$$
x(s)=x_{\beta}(s)+D(s) \frac{\Delta p}{p_{0}}
$$

Dispersion function: $D(s)$
Dispersion equation: $D^{\prime \prime}(s)+K(s) D(s)=\frac{1}{\rho}$

## Dispersion and orbit

Meaning:
$\mathrm{x}_{\mathrm{D}}(\mathrm{s})$ describes the deviation of the closed orbit for an off-momentum particle with $p=p_{0}+\Delta p$
$\mathrm{x}_{\beta}$ describes the betatron oscillation around the new chromatic close orbit


## Chromaticity

- Off-momentum particle gets different focusing

- Chromaticity acts like a quadrupole error (optical aberration), $\Delta K=-K \frac{\Delta p}{p}$
and leads to a tune spread:

$$
\xi=\frac{\Delta Q}{\frac{\Delta p}{p}}, \text { first order chromaticity }
$$

## Chromaticity

## $\Delta \Delta$

- How to correct chromaticity?



## ELENA ring optics

## Betatron and dispersion functions

Good tunability in the range $2<\mathrm{Q}_{\mathrm{x}}<2.5$ and $1<\mathrm{Q}_{\mathrm{y}}<1.5$

Hexagonal lattice

Periodicity of two:

- e-cooling section +2 standard sections
- Injection section + 2 standard sections

3 families of quadrupoles (each of 4 members)

2 skew quadrupoles

2 families of sextupoles (each of two members)


## Beam



## Beam

## - Ensemble of particles

Beam is a set of millions/billions of particles ( $N$ )
For example, a Gaussian transverse distribution has a Gaussian density profile in phase space

$$
f\left(x, x^{\prime}, y, y^{\prime}\right)=\frac{N}{A} \exp \left(-\frac{\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}+\beta_{x} x^{\prime 2}}{2 \epsilon_{x, \mathrm{rms}}}+\frac{\gamma_{y} y^{2}+2 \alpha_{y} y y^{\prime}+\beta_{y} y^{\prime 2}}{2 \epsilon_{y, \mathrm{rms}}}\right)
$$




## Emittance

## $\square$ Statistical definition

Let's consider first a 2D $x-x$ 'beam phase space for an ensemble of particles. We need to characterise the spread of particles in phase space

Emittance is a measure of the phase space area occupied by a beam

$$
\epsilon_{x, r m s}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x x^{\prime}\right\rangle^{2}}
$$

$$
\left\{\begin{array}{l}
\left\langle x^{2}\right\rangle=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\langle x\rangle\right)^{2} \\
\left\langle x^{\prime 2}\right\rangle=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}^{\prime}-\left\langle x^{\prime}\right\rangle\right)^{2} \\
\left\langle x x^{\prime}\right\rangle=\frac{1}{N} \sum_{i \neq j}^{N} \sum_{j=1}^{N}\left(x_{i}-\langle x\rangle\right)\left(x_{j}^{\prime}-\left\langle x^{\prime}\right\rangle\right)
\end{array}\right.
$$



## Emittance

## - Emittance and Courant-Snyder Invariant

Particle orbit in terms of lattice Twiss parameters

$$
(i=1 \text { to } N)\left\{\begin{array}{l}
x_{i}(s)=\sqrt{\epsilon_{i} \beta(s)} \cos \left(\psi(s)+\phi_{i}\right) \\
x_{i}^{\prime}(s)=-\sqrt{\epsilon_{i} / \beta(s)}\left[\alpha(s) \cos \left(\psi(s)+\phi_{i}\right)+\sin \left(\psi(s)+\phi_{i}\right)\right]
\end{array}\right.
$$

For a matched beam, for each $\varepsilon_{\mathrm{i}}$, particles are uniformly distributed around the ellipse

$$
\begin{aligned}
\left\langle x^{2}\right\rangle & =\frac{1}{N} \sum_{i=1}^{N} \epsilon_{i} \beta(s) \cos ^{2}\left(\psi(s)+\phi_{i}\right)=\beta(s)\langle\epsilon\rangle \\
\left\langle x^{\prime 2}\right\rangle & =\gamma(s)\langle\epsilon\rangle \\
\left\langle x x^{\prime}\right\rangle & =\alpha(s)\langle\epsilon\rangle \quad \epsilon_{r m s}=\frac{1}{N} \sum_{i=1}^{N} \epsilon_{i}=\langle\epsilon\rangle \quad x^{\prime}
\end{aligned}
$$

Courant-Snyder Invariant can be seen as a single particle emittance

## Emittance (other definitions)

- Normalised emittance:

$$
\text { Area enclosed }=\iint d x d x^{\prime}=\frac{1}{p} \iint d x d p_{x}=\pi \epsilon
$$

The geometric emittance, as defined before, decreases as $1 / p$ or $1 /(\beta \gamma)$, so when a beam is accelerated, it is not $\epsilon$ that is conserved, but the quantity

$$
\begin{aligned}
& \epsilon_{n}=\beta_{r e l} \gamma_{r e l} \epsilon \\
& \beta_{r e l}=v / c \\
& \gamma_{r e l}: \quad \text { Lorentz factor }
\end{aligned}
$$

- Percentile emittance:
e.g. 95\% emittance, which defines the area of ellipse that contains $95 \%$ of the beam. It is a convenient definition when we have to deal with irregular beam distributions



## Liouville's theorem

In a Hamiltonian system, i.e. in the absence of collisions or dissipative processes, the density in phase space along the trajectory is invariant


Joseph Liouville

As particle moves along the orbit the shape and position of the phase space ellipse change according to $\beta(\mathrm{s})$, but the area remains constant.
$M\left(s_{5} \mid s_{1}\right)=M\left(s_{5} \mid s_{4}\right) \cdots M\left(s_{3} \mid s_{2}\right) M\left(s_{2} \mid s_{1}\right)$

$$
\operatorname{det}(M)=1
$$

## $S_{1}$



Poincare invariant:
Area enclosed $=\iint d x d x^{\prime}=\frac{1}{p} \iint d x d p_{x}=\pi \epsilon$
(in 2-D. It can be extended to the beam volume)

## Emittance dilution

## Hamiltonian

- Accelerator system
- Beam mismatch
- Nonlinear optics
- Errors,misalignments
- Collective effects
- Space charge
- Coherent synchrotron radiation (CSR)
- Wakefield (impedance)
- Two-beam effects
- Beam-beam
- Electron cloud for positively charged beam
- Ion effects for electron beams


## Non-Hamiltonian

- Synchrotron radiation
- Scattering
- Residual gas scattering
- Intrabeam scattering
- Touschek scattering


## Rest gas scattering



- Emittance growth caused mainly by Multiple Coulomb Scattering

$$
\frac{d \epsilon_{r m s}}{d t}=2 \pi\left\langle\beta_{\perp}\right\rangle n_{m s} \ln \left(\frac{280}{\alpha}\right) r_{e}^{2} \frac{\left(m_{e} c^{2}\right)^{2}}{\beta c p^{2}}
$$

Relativistic velocity factor: $\beta=v / c$
Average betatron function: $\left\langle\beta_{\perp}\right\rangle=1 / 2\left(\left\langle\beta_{x}\right\rangle+\left\langle\beta_{y}\right\rangle\right)$
Multiple scattering density: $n_{m s}=\sum_{i} n_{i} \frac{Z^{2} \ln \left(280 /\left(\alpha(A Z)^{1 / 3}\right)\right)}{\ln (280 / \alpha)}$
N. Madsen, CERN/PS/DI Note 99-06, (1999)Multiple small-angle Coulomb scatterings of charged particles within the beam itself
$\square$ Exchange of energy between the transverse and longitudinal degrees of freedom, leading to the growth of the beam phase dimensionsEmittance growth rates:

$$
\frac{1}{\tau_{x}}, \frac{1}{\tau_{y}}, \frac{1}{\tau_{p}} \propto \frac{r_{p}^{2} c}{32 \pi \sqrt{\pi} \beta^{3} \gamma^{4} \epsilon_{x} \epsilon_{y} \sigma_{p}} \lambda
$$

$$
\lambda= \begin{cases}N / C & \text { for coasting beams } \\ N_{b} /\left(2 \sqrt{\pi} \sigma_{s}\right) & \text { for bunched beams }\end{cases}
$$

where $N$ is the number of particles in the beam, and $N_{b}$ is the number of particles per bunch;
$C$ is the circumference of the ring, $\sigma_{s}$ the bunch length, and $\sigma_{p}$ the momentum spread


## Beam cooling

- Beam cooling means reduction of beam temperature
- In this context, temperature is equivalent to terms as phase space volume, emittance and momentum spread
- Beam cooling techniques are non-Liouvillean, i.e. violate the assumption of conservative forces


## Benefits of beam cooling

- Improved beam quality
- Precision experiments
- Luminosity increase (in colliders)
- Increase lifetime
- Compensation of heating
- Experiments with internal target
- Colliding beams
- Other scattering effects, e.g. IBS
- Intensity increase by accumulation
- Weak beams from the source can be enhanced
- Secondary beams (antiprotons, rare isotopes)


## Electron cooling



- Consolidated technique, first proposed by G. Budker in 1966

- Cold electrons interacting with hot ions
- Momentum transfer by Coulomb collisions

Cooling force results from energy loss in the co-moving gas of free electrons Equilibrium:

$$
k_{B} T_{i}=k_{B} T_{e} \quad \text { or } \quad m_{i} v_{i}^{2}=m_{e} v_{e}^{2}
$$

$$
\frac{\text { ion }}{v_{i}} v_{i}=v_{e} \sqrt{\frac{m_{e}}{m_{i}}}
$$

## Electron cooling in ELENA



More details about cooling in L. V. Joergenson's talk, this workshop

## Electron cooling in ELENA

Emittance measurement by scraping

First evidence of significant electron cooling in ELENA

J. Hunt et al., NIMA 896 (2018) 139
J. Hunt et al., PRST-AB 23 (2020) 032802

|  | Off | On | Change |
| :--- | ---: | ---: | ---: |
| $\epsilon_{y}(\mathrm{~mm} \mathrm{mrad})$ | $2.55 \pm 0.03$ | $0.53 \pm 0.01$ | $79 \% \pm 2 \%$ |
| $y_{0}(\mathrm{~mm})$ | $-2.08 \pm 0.03$ | $-2.03 \pm 0.03$ | $0.05 \pm 0.06$ |
| $\epsilon_{x}(\mathrm{~mm}$ mrad $)$ | $2.5 \pm 0.20$ | $0.55 \pm 0.04$ | $78 \% \pm 10 \%$ |
| $x_{0}(\mathrm{~mm})$ | $-3.67 \pm 0.04$ | $-3.91 \pm 0.04$ | $-0.24 \pm 0.08$ |

## Electrostatic transfer lines

$\square$ Electrostatic or magnetic beamline?
$\square$ At low velocities electric fields may be more efficient

- 100 keV is still in the reachable range for electrostatic elements
$\square$ Advantages of electrostatic:
$\square$ No hysteresis
$\square$ Better stability. Easy field shaping
$\square$ Low power consumption
$\square$ Cheap power supplies
$\square$ Good magnetic shielding possibilities
$\square$ Disadvantages:
$\square$ Safety with high-voltage
$\square$ Interlocking against sparks


## Electrostatic deflectors

G4beamline model of TL from ELENA to ALPHA


Courtesy of V. Rodin

## ELENA Electrostatic transfer lines



Experiments, next talks ...

## Summary

- Basic definitions (briefly) reviewed for both linear longitudinal and transverse beam dynamics
- Starting from Lorentz equation
- Techniques to accelerate particles (linacs, circular accelerators)
- Magnets to guide the particle trajectory (dipoles, quadrupoles)
- Single-particle beam dynamics
- Hill's equation and betatron motion
- Matrix description (maps)
- Off momentum particles: Dispersion function, Chromaticity
- Multiparticle-beam
- Transverse phase space: C-S invariant, emittance, Liouville's Theorem
- Emittance dilution mechanism
- Beam cooling; electron cooling
- Electrostatic elements
- New accelerator facilities, such as ELENA, play a key role in antimatter research


## Thank you!

## Normalised emittance

- Apply some acceleration along $z$ to all particles in the bunch
- $P_{x}$ is constant
- $P_{z}$ increases
$-x^{\prime}=P_{x} / P_{z}$ decreases!
- So the bunch emittance decreases
- This is an example of something called Liouville's Theorem
- ~"Emittance is conserved in ( $x, P_{x}$ ) space"
- Define normalised emittance

$$
\varepsilon_{n}=\frac{<p_{z}>}{m} \varepsilon
$$

## Basic blocks: FODO Cell



Symmetric transfer matrix from center to center of focusing quads

$$
\begin{gathered}
\mathcal{M}_{\mathrm{FODO}}=\mathcal{M}_{\mathrm{HQF}} \cdot \mathcal{M}_{\mathrm{drift}} \cdot \mathcal{M}_{\mathrm{QD}} \cdot \mathcal{M}_{\mathrm{drift}} \cdot \mathcal{M}_{\mathrm{HQF}} \\
\mathcal{M}_{\mathrm{HQF}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right), \mathcal{M}_{\mathrm{drift}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right), \mathcal{M}_{\mathrm{QD}}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right) \\
\mathcal{M}_{\mathrm{FODO}}=\left(\begin{array}{cc}
1-\frac{L^{2}}{2 f^{2}} & 2 L\left(1+\frac{L}{2 f}\right) \\
-\frac{L}{2 f^{2}}\left(1-\frac{L}{2 f}\right) & 1-\frac{L^{2}}{2 f^{2}}
\end{array}\right)
\end{gathered}
$$

## Evolution of phase space

- A large $\beta$-function corresponds to a large beam size and a small beam divergence


In the middle of quad. QF , $\beta_{x}$ is maximum ( $\beta_{y}$ minimum), and $\alpha_{x, y}=0$


In the middle of quad. QD, $\beta_{y}$ is maximum ( $\beta_{x}$ minimum), and $\alpha_{x, y}=0$

## Nonlinearities

In reality, some lattices have significant higher order terms

$$
x^{\prime \prime}+K(s) x=O\left(x^{2}\right)+\ldots
$$

and magnetic imperfections, e.g. dipole errors

$$
x^{\prime \prime}+K(s) x=\delta\left(s-s_{0}\right) \theta_{\text {error }}
$$

which can drive resonances
Tacoma Narrow bridge 1940

(Excitation by strong wind on the eigenfrequencies)

## Resonances

Hill's equation is quasiharmonic, and whenever we have a harmonic system, the danger of exciting a resonance exists. Multiple sources of resonant driving terms exist in accelerators:

Tune diagram

- Linear magnet imperfections
- Time varying fields
- Nonlinear magnets
- Collective effects
- etc., etc.

$$
l Q_{x}+m Q_{y}=r
$$

where $(l, m, r)$ are integers


## Nonlinearities

- Example:

Sextupoles are the most common magnet nonlinearities in accelerators
Phase space plot of particle motion close to a fifth-order resonance

(b)

With a sextupole element
(Courtesy of W. Herr and E. Forest)

