Electric Dipole Moment Measurements at Storage Rings – Polarisation Measurements

J. Pretz RWTH Aachen & FZ Jülich

JARA Jülich Aachen Research Alliance

AVA School, Prag Alfter-Witterschlick, March 2020

Outline

- Electric Dipole Moments (EDM)
- → Observable: Polarisation
 Optimal Observables, Event Weighting, Maximum Likelihood Method

Electric Dipole Moments (EDM)

- permanent separation of positive and negative charge
- fundamental property of particles (like magnetic moment, mass, charge)
- existence of EDM only possible via violation of time reversal T CPT CP and parity P symmetry
- close connection to "matter-antimatter" asymmetry
- axion field leads to oscillating EDM

Proton EDM

p

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 update

N BARYONS (S = 0, I = 1/2) $p, N^+ = uud; n, N^0 = udd$ $I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$ Mass $m = 1.00727646688 \pm 0.00000000009$ µ Mass $m = 938.272081 \pm 0.000006$ MeV [a] $|m_p - m_{\overline{p}}|/m_p < 7 \times 10^{-10}$, CL = 90% [b] $\left| q_{
m p} + q_{\overline{
m p}}
ight| / e \ < \ 7 imes 10^{-10}$, CL $= \ 90\%$ $^{[b]}$ $|q_{p} + q_{e}|/e < 1 \times 10^{-21} [c]$ Magnetic moment $\mu = 2.7928473446 \pm 0.000000008 \,\mu_M$ $(\mu_{\rm p} \pm \mu_{\rm p}) / \mu_{\rm p} = (0.3 \pm 0.8) \times 10^{-6}$ Electric dipole moment $d < 0.021 \times 10^{-23} e \,\mathrm{cm}$ Electric polarizability $\alpha = (11.2 \pm 0.4) \times 10^{-4} \text{ fm}^3$ Magnetic polarizability $\beta = (2.5 \pm 0.4) \times 10^{-4} \text{ fm}^3$ (S = 1.2) Charge radius, μp Lamb shift = 0.84087 \pm 0.00039 fm ^[d] Charge radius. ep CODATA value = 0.8751 \pm 0.0061 fm ^[d] Magnetic radius = 0.851 ± 0.026 fm ^[e] Mean life $\tau > 2.1 \times 10^{29}$ years, CL = 90% ^[f] ($p \rightarrow$ invisible mode) Mean life $\tau > 10^{31}$ to 10^{33} years [f] (mode dependent)

EDM: Current Upper Limits

storage rings: EDMs of **charged** hadrons: $p, d, {}^{3}$ He

Experimental Method: Generic Idea

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Experimental Method: Generic Idea

build-up of vertical polarization $s_{\perp} \propto d$, if $\vec{s}_{horz} || \vec{p}$ (frozen spin)

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$= \vec{\Omega}_{\text{MDM}} = \vec{\Omega}_{\text{EDM}}$$
electric dipole moment (EDM): $\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$,
magnetic dipole moment (MDM): $\vec{\mu} = 2(G+1) \frac{q\hbar}{2m} \vec{s}$

Note: $\eta = 2 \cdot 10^{-15}$ for $d = 10^{-29} e$ cm, $G \approx 1.79$ for protons

Spin Precession: Thomas-BMT Equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[G\vec{B} + \left(G - \frac{1}{\gamma^2 - 1} \right) \vec{v} \times \vec{E} + \frac{\eta}{2} (\vec{E} + \vec{v} \times \vec{B}) \right] \times \vec{s}$$
$$\underbrace{\vec{\Omega}_{\text{MDM}} = 0, \text{ frozen spin}}_{\vec{\Omega}_{\text{EDM}}} \underbrace{\vec{\Omega}_{\text{EDM}}}_{\vec{u} \in \vec{\Omega}_{\text{EDM}}}$$

achievable with pure electric field if $G = \frac{1}{\gamma^2 - 1}$, works only for G > 0, e.g. proton or with special combination of *E*, *B* fields and γ , i.e. momentum

Momentum and ring radius for **proton** in frozen spin condition

Momentum and ring radius for **deuteron** in frozen spin condition

Momentum and ring radius for electron in frozen spin condition

Different Options

	\bigcirc	\odot
3.) pure electric ring	no \vec{B} field needed,	works only for particles
	♂, ♂ beams simultaneously	with $G > 0$ (e.g. e, p)
2.) combined ring	works for $e, p, d, {}^{3}He$,	both \vec{E} and \vec{B}
	smaller ring radius	B field reversal for \circlearrowright , \circlearrowright
		required
1.) pure magnetic ring	existing (upgraded) COSY	lower sensitivity,
	ring can be used,	precession due to G,
	shorter time scale	i.e. no frozen spin

Observable is in all cases a spin polarization!

Talk on EDM

Polarization Measurements

Counting Rates, Cross Section, Polarization

Counting Rates, Cross Section, Polarization

 $\Rightarrow N(\vartheta,\varphi) = \mathcal{L}a(\vartheta,\varphi)\sigma(\vartheta) \Big(1 + PA(\vartheta)\cos(\varphi)\Big), \qquad \sigma = \frac{1}{2}(\sigma_L + \sigma_R)$

Goal

Determine *P* from counting rate $N(\vartheta, \varphi)$ and analysing power $A(\vartheta)$ with small uncertainty σ_P .

To simplify the discussion

• assume constant acceptance in
$$\varphi$$
: $\frac{\partial a(\vartheta, \varphi)}{\partial \varphi} = 0$

• detector placed at one polar angle ϑ

We are left with

$$N(\varphi) = \frac{1}{2\pi} N_0 (1 + PA\cos(\varphi)) \quad , N_0 = a\mathcal{L}\sigma$$

Event Distribution

Most easy way to get P

Just consider counts in the left part of the detector $\varphi \approx 0, \cos(\varphi) = 1$ and the right part $\varphi \approx \pi, \cos(\varphi) = -1$.

Consider a counting rate asymmetry

 $\hat{P} = rac{1}{A} rac{N_L - N_R}{N_L + N_R} \,, \qquad \hat{P}: \, ext{estimator for } P.$

If A is known, one can determine P.

Note:

 $\langle N_{L,R} \rangle$: expectation value

 $N_{L,R}$: actually measured number of events

What about the error?

Error propagation gives:
$$\sigma_P = \frac{1}{A\sqrt{N}}$$

(assuming $PA \ll 1$, i.e. $N_L \approx N_R =: N/2$) As in any counting experiment the statistical error scales with $1/\sqrt{N}$. Counting only events in small region $\Delta \varphi$ around $\varphi = 0$ and π results in small $N = N_0 \frac{2\Delta \varphi}{2\pi}$ and thus large error.

It's more convenient to work with the Figure of Merit (FOM):

 $\mathsf{FOM}_{P} = \sigma_{P}^{-2} = N A^{2}$

How does error change if we include more events, i.e. making $\Delta \varphi$ larger?

estimator
$$\begin{aligned} & \widehat{P} = \frac{1}{A\langle \cos(\varphi) \rangle} \frac{N_L - N_R}{N_L + N_R} \\ \sigma_P &= \frac{1}{\sqrt{N}} \frac{1}{A\langle \cos(\varphi) \rangle} , \\ \text{number of events: } N &= \frac{4\varphi_{max}}{2\pi} \end{aligned}$$

$$arphi_{max} \nearrow \Rightarrow N \nearrow$$
 $arphi_{max} \nearrow \Rightarrow \langle \cos(arphi)
angle \searrow$

$$\langle \cos(arphi)
angle = rac{\int_{-arphi max}^{arphi max} \cos(arphi) \mathrm{d}arphi}{2arphi max}$$

 $\mathsf{FOM}_P = \sigma_P^{-2} = N \left(A \langle \cos(\varphi) \rangle \right)^2$

Figure of Merit (FOM)

- strange behavior: Adding data beyond $\varphi_{max} > 67^{\circ}$ the FOM decreases
- Reason: adding data at larger φ "dilutes" the sample

Can one do better? Yes! Event Weighting

Instead of just counting events, weight every event with a weight function $w(\varphi)$.

Estimator for P

$$\hat{P} = rac{1}{A} rac{\sum_{L,R} w_i}{\sum_{L,R} w_i \cos(\varphi_i)}$$

In principle weight w arbitrary, two cases are of interest

choice $w(\varphi) \equiv A\cos(\varphi)$ leads to smallest statistical error.

In terms of highest FOM.

Every event weighted with $w = A\cos(\varphi)$

What about the error?

Error Propagation:
$$FOM_P = NA^2 \frac{\langle w \cos(\varphi) \rangle^2}{\langle w^2 \rangle}$$

	counting, $w = 1$	$w = A \cos(\varphi)$, MLH, binning
FOM _P	$N\!A^2 \langle \cos(arphi) angle^2$	$N\!A^2\langle \cos(arphi)^2 angle$

Gain in FOM: $\frac{\langle \cos(\varphi)^2 \rangle}{\langle \cos(\varphi) \rangle^2} \ge 1$

An event with a large $cos(\varphi)$ tells you more about *P* than an event with lower $cos(\varphi)$. It should thus enter the analysis with more weight.

FOM

Connection to Maximum Likelihood Method

$$N(arphi) \propto (1 + A\cos(arphi)P) = (1 + eta(arphi)P),$$

Here: $eta(arphi) = A\cos(arphi)$

Log-likelihood function

$$\ell = \sum_{i=1}^{N} \ln (1 + \beta(\varphi_i) P)$$

Connection to Maximum Likelihood Method

MLH estimator for *P*: Maximize
$$\ell \Rightarrow \frac{\partial \ell}{\partial P} \stackrel{!}{=} 0$$

$$\Rightarrow \frac{\partial \ell}{\partial P} = \sum_{i} \frac{\beta(\varphi_i)}{1 + \beta(\varphi_i)P} = 0$$

for $\beta(\varphi_i)P \ll 1$:
$$\Rightarrow \sum_{i} \beta(\varphi_i)(1 - \beta(\varphi_i)P) = 0$$

$$\Rightarrow \hat{P} = \frac{\sum_{i} \beta(\varphi_{i})}{\sum_{i} \beta^{2}(\varphi_{i})} = \frac{1}{A} \frac{\sum_{i} \cos(\varphi_{i})}{\sum_{i} \cos^{2}(\varphi_{i})}$$

Estimator of maximum likelihood function coincides with estimator for optimal weight!

It is well known that MLH estimator reach largest FOM (Cramer-Rao-bound).

More general case

events follow distribution $N(\vec{x}) \propto (1 + \beta(\vec{x})P)$

For optimal event weight/MLH FOM is given by

 $\mathsf{FOM}_P = N \langle \beta(\vec{x})^2 \rangle$

Counting rates reach only

 $\mathsf{FOM}_P = N \langle \beta(\vec{x}) \rangle^2$

$$egin{aligned} &\langle eta(ec{x})
angle = rac{\int_X eta(ec{x}) \mathrm{dx}^\mathrm{n}}{\int_X \mathrm{dx}^\mathrm{n}}\,, \quad X = \mathrm{acc.} ext{ events} \end{aligned}$$

for example $\beta(\vec{x}) = \beta(\vartheta, \varphi) = A(\vartheta) \cos(\varphi)$

Summary

- Polarizations can be extracted from azimuthal dependent event rates, knowing the analyzing power *A*
- weighting the events with $\cos(\varphi)$ give the largest FOM
- Gain with respect to just counting events is $\frac{FOM_w}{FO}$

$$\frac{\mathsf{M}_{w=A\cos(\varphi)}}{\mathsf{OM}_{out}} = \frac{\langle \cos(\varphi) \rangle}{\langle \cos(\varphi) \rangle}$$

• Assumption made on acceptance, $P\!A \ll 1$, fixed ϑ , ... were only made to simplify dicussions

Literature I

- F. Müller et al., "Measurement of deuteron carbon vector analyzing powers in the kinetic energy range 170-380 MeV," 2020.
- C. Adolph <u>et al.</u>, "Longitudinal double spin asymmetries in single hadron quasi-real photoproduction at high p_T ," <u>Phys. Lett.</u>, vol. B753, pp. 573–579, 2016.
- M. Alekseev et al., "Gluon polarisation in the nucleon and longitudinal double spin asymmetries from open charm muoproduction," <u>Phys. Lett.</u>, vol. B676, pp. 31–38, 2009. [Online]. Available: https://doi.org/10.1016/j.physletb.2009.04.059
- G. W. Bennett et al., "Measurement of the negative muon anomalous magnetic moment to 0.7 ppm," Phys. Rev. Lett., vol. 92, p. 161802, 2004.

Literature II

- Pretz, J. and Müller, F., "Extraction of Azimuthal Asymmetries using Optimal Observables," <u>Eur. Phys. J.</u>, vol. C79, no. 1, p. 47, 2019. [Online]. Available: https://doi.org/10.1140/epjc/s10052-019-6580-3
- J. Pretz, "Comparison of methods to extract an asymmetry parameter from data," <u>Nucl. Instrum. Meth.</u>, vol. A659, pp. 456–461, 2011. [Online]. Available: https://doi.org/10.1016/j.nima.2011.08.036
- J. Pretz and J.-M. Le Goff, "Simultaneous Determination of Signal and Background Asymmetries," <u>Nucl. Instrum. Meth.</u>, vol. A602, pp. 594–596, 2009.

Spare

Polarization P, Analyzing Power A

$$N_{L} = a_{L} \rho \ell (n^{\uparrow} \sigma_{\uparrow,L} + n^{\downarrow} \sigma_{\downarrow,L})$$

$$\stackrel{\varphi - \text{sym}}{=} a_{L} \rho \ell (n^{\uparrow} \sigma_{\uparrow,L} + n^{\downarrow} \sigma_{\uparrow,R})$$

$$N_{R} = a_{R} \rho \ell (n^{\uparrow} \sigma_{\uparrow,R} + n^{\downarrow} \sigma_{\downarrow,R})$$

$$\stackrel{\varphi - \text{sym}}{=} a_{R} \rho \ell (n^{\uparrow} \sigma_{\uparrow,R} + n^{\downarrow} \sigma_{\uparrow,L})$$

 $n^{\uparrow}(n^{\downarrow})$: nb. of beam particles with spin up (down) $P = \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}}$: Polarization $\sigma_{\uparrow,R} \equiv \sigma_{\downarrow,L} =: \sigma_R$: cross section for scattering process to the right (left) if spin is up (down)

$$\sigma_{\downarrow,R} \equiv \sigma_{\uparrow,L} =: \sigma_L:$$

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}: \text{ analyzing power}$$

Polarization P, Analyzing Power A

With the definitions

$$A = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$$
 and $P = \frac{n^{\uparrow} - n^{\downarrow}}{n^{\uparrow} + n^{\downarrow}}$

one can write

$$N_{R} = a_{R} \rho \ell \sigma (1 + AP)$$

$$N_{L} = a_{L} \rho \ell \sigma (1 - AP)$$

with $\sigma = \frac{1}{2} (\sigma_{R} + \sigma_{L})$