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What do we want to study? 

• Goal:  study the matter and interactions at most fundamental level 

→ test all parts of Standard Model (SM) 

→ search for physics beyond SM (dark matter, supersymmetry, ...)
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High energy particle experiment in nutshell 
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ACCELERATOR
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What requirements to put on accelerator?
Goal:  produce as many interesting events as possible 

• the highest possible energy of interaction (√s)

– higher energy → can observe particles with higher mass (E=mc2)

– Heissenberg’s uncertainty principle:

→ the higher momentum (energy), the smaller scales can be probed 

• the highest possible amount of collisions (luminosity)

– the number of events for a given process:

σ – the production rate of a given process (cross-section)
• there is hidden the physics 

N=σ × Luminosity

Δ x⋅Δ p∼ℏ
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How to get to high energy?  

• linear vs. circular accelerators

– circular colliders: 
• particles can be accelerated over many rotations → higher energy
• the beams can be reused → larger integrated luminosity
• there is fundamental limitation: accelerating charge particles radiate

– Emitted power is inversely proportional to particle mass4

→ severe limitation for electrons

→ typically using circular synchrotrons for protons, linear for electrons
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How to get to high energy? (2)  

• Why as big as possible circular?

– Particle trajectories have to stay within beamline

– Energy of protons on stable circular orbit in magnetic field: 

– The higher radius ‘R’, the higher energy 

• For a given radius R:

– Need the highest possible dipole magnets to bend the trajectory

– To bend protons at LHC (E=√s/2=6.5 TeV)→ magnets with B=8T needed
• This is limiting factor! → the collision energy is set by the strength of 

dipole magnetic field
• LHC: superconducting Niobium-Titanium coils cooled down to 1.9K

E [GeV ]≈0.3×B[T ]×R[m ]
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How to obtain high luminosity?

L(t )= f⋅nB
N1⋅N 2

Area
⋅F= f⋅nB

N1⋅N 2

4 πσ xσ y

⋅F

• The amount of data delivered is given by luminosity:

• Collision rate: instantaneous luminosity L(t) 

f – revolution frequency (for a given radius it’s ~constant) (LHC:11kHz)

n
B
 – number of bunches in a beam (~3000 → bunch crossing every 25ns)

N
1
, N

2
 – number of particles in a bunch (~1011 protons)

Area – transverse area of the bunch

– σ
x
,σ

y
– root-mean-square of beam width in horizontal/vertical direction (O 10(10 μm))

– F – geometric factor of order O 1(10 ) to correct for crossing-angle of bunches

• Simultaneous optimization of all parameters to get the highest overall luminosity

– e.g. stop running at certain small instantaneous luminosity and start new run

L=∫ Linst( t)dt
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Accelerator chain

• Each accelerator typically increases energy of particles by order of O 10 100(10 -100) )



10

My (only) direct accelerator experience 
• Measuring magnet misalignments at Tevatron (Jun’09)
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DETECTOR
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What are we able to detect?
• Only ‘stable’ (within volume of detector) particles can be detected

– Charged leptons: electrons, muons

– Neutrinos not detected

– Quarks can not be detected (colored particles)
• But hadrons with long lifetime can (pions, kaons)

• Two ways to measure properties of particles interacting with matter:

– Passively observing particles without disturbing the trajectory
• charged particles interacting electromagnetically 

– Stop the particle and measure the energy deposited in the material
• charged and neutral particles
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Detector structure

TRACKING 
DETECTORS CALORIMETERS

MUON 
DETECTORS
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General detector considerations
• design have to be optimized 

– e.g. more material in tracking detector have impact on reconstruction in 
outer parts of detector

• typical onion-like structure:

– want to cover as much as possible (4π) in cover angle

– want to distinguish between different particles

– the part closest to interaction: tracking detectors
• Must be before calorimeters which absorb particles

– afterwards calorimeters (el, had)
• electromagnetic: 

– must be first to absorb only elmag interacting particles (el., 
photons), to be able to distinguish from hadrons

• hadronic: absorbing hadronically interacting particles

– the last are muon detectors:
• able to pass through all detectors



15

Particle detection

• Other hadrons (pions, haons) also absorbed in hadronic cal.
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Tracking detectors
• measure hits along tracks of particles 

– elmag. interact. (ionization)

→ only charge particle tracks

→ Trajectory curved in magnetic field 

• calculate momentum from the curvature of tracks

• typically, silicon semiconductor detectors used

– excelent position resolution: O(1010 μm)
– radiation hardness 

• typical particle energies: O(10100 MeV-100 GeV)

• momentum resolution:

ϕ∝1/R∝1/ p→
dp
p

∝d ϕ⋅p∝(const .)⋅p⊕d

multiply 
scattering

bending
angle
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Calorimeters (1)
• measure energy by absorbing particles 

• sampling calorimeters: 

– active medium (generates signal)
• Scintillator (CDF el.-mag.), liquid (ATLAS el.-mag.: liquid Ar) 

– passive medium (absorber)
• the material with high density, e.g. steel (CDF/ATLAS had.),          

lead (CDF/ATLAS el.-mag.)

CDF calorimeter
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Calorimeters (2)
• electromagnetic vs. hadronic calorimeters:

– electromagnetic vs.  nuclear interactions 

– electrons of energies >~10 MeV predominantly lose energy by bremsstrahlung 
(photon radiation)

– high-energy photons by e+e- pair production

– hadronic calorimeters typically larger

• resolution:  E~N particles in shower, stochastic process: σ(N)= √N → σ(E)~√E:

• comparison to trackers:

– calorimeters: 

• better resolution at high p
T

• can reconstruct neutral particles

– trackers: 

• better p
T
 resolution at low p

T
, 

• better angular resolution, can distinguish pile-up

stochastic
term

detector 
non-uniformity,etc.

Electronic noise
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Muon detectors
• help identify muons

• typically, drift tubes detectors 

• combine hits from tracking and muon detectors 
to reconstruct muon tracks
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Trigger (1)
• LHC collisions: each 25ns 

→ colliding rate 40MHz

• ATLAS: 100M channels → 1MB/event

→ 40TB/s of data→ too much to save/process 

• even if we could save all events 

– not all events that interesting 

(W/Z and Top have 6-8 orders smaller 
cross-section than total cross-section) 

– we don’t need arbitrary many events 
• At some point, systematic uncertainty                                                   

dominate the statistical ones
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Trigger (2)

• trigger is responsible for real-time selection of the subset of events

• typically: trigger has 2-3 levels

– 1st/2nd level: specific hardware using information only from part of the detector

– 2nd/3rd level: software based

• we are able to save ~1kHz of events: O(10100-1000) MB/s 

– ~4-5 orders of magnitude reduction of rate
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COMPUTING
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To set the stage
• we need to process and store

– experimental data
• Number of raw events: 1kHz * 200 days *50% efficiency ~ 10G ev./ year 
• Raw Size: 1MB/event * 10G events = 10 PB / year

– simulated data

• modeling processes, test of reconstruction, evaluation of systematics, ...
• Typically, there are more than experimental data: more stats than in data, 

many processes, generators, settings, etc.

• typical processing time: 

– Data reconstruction: O(1010  ) seconds / event  → O(101k-10k) CPUs / year

– Simulation: O(101) minutes / event, but very broad range(~1min to ~few hours)

~200PB of data on disk!

300k of running jobs
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Computing model
• can not do all processing in one place → need distributed computing (grid)
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Typical steps in processing

• different physics groups typically need different objects, selections of events

→ using different set of files (in ATLAS: DAOD) 

• final formats used in physics analysis typically ROOT ntuples

–  all-together O(10100 GB – 1 TB) in size 

→ still need processing on grid / local computing cluster 
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Simulation of events
• Simulation of events based on Monte-Carlo (MC) methods 
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Event generation
• simulation of fundamental physics for a given process

• MC event generators perform the calculations of the 
underlying theory, e.g. quantum chromodynamics (QCD)

– have different levels of precision

– Typically, using next-to-leading order generators         
(e.g. Powheg)

• a few steps:

• typically the fastest step in simulation: O(10<1 s)/event

– Huge variations in processing time (up to a few hours/event) 
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Detector Simulation
• simulate passage of generated particles through the detector 

• using mostly Geant software

– particle walks through the detector 

– most of the time spent in calorimeter 

• where possible, using fast simulation

– parameterize how a given particle will look like in detector (e.g. ‘a pion will 
look such-and-such’)

– don’t walk particle through detector, rather smear things directly in detector

– typical speed-up O(1010-100)

• typically, most CPU consuming part of simulation O(101-10) minutes/event
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Reconstruction and pile-up
• taking RAW data from detector and turning them into 

analysis objects (electrons, muons, jets,…)

• multiply pp interactions (pile-up) possible when                   
two proton bunches collide 

– Typically, one hard (high-p
T
) collision and             order 

of O(1010) of soft collisions

• processing time highly dependent on pile-up

– Combinatorics in tracking 



30

What kind of jobs are we running?

• typically, detector simulation (full+fast) uses most of processing time
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PHYSICS ANALYSIS
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what kind of physics analysis possible?
• High-energy particle experiments are multipurpose experiments 

→ test all parts of Standard Model (SM) and search for physics beyond SM

low p
T
 QCD 

b-quark physics:

Top quark physics

high-pT QCD tests   
(jets cross-section)
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what kind of physics analysis possible? (2)

Search for new physics (e.g. dark matter):

Heavy ion physics(e.g. jet suppression)

Higgs boson (observation)

Electro-weak tests (W mass)
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Which basic objects do we reconstruct?
• We actually measure only track hits of charged particles and the deposited 

energy in the calorimeter

• Basic objects reconstructed from tracks and deposited energy:

– Leptons
• Electrons
• Muons
• Taus

– Photons

– Jets 
• Showers of particles originating                                                                 

 from quarks/gluons

– Missing transverse momentum 
• provides info about neutrinos

• Most of the analyses use some combination of these reconstructed objects



35

Electron & Photon reconstruction
• reconstructed from energy deposited in the electromagnetic calorimeter  

(clusters of calorimeter cells) 

– electron does have an associated track

– photon does not

• the reconstructed electrons need to be corrected for data/MC difference in 

– probability of reconstruction (efficiency)

• events in MC weighted with scale factor SF = eff
data

/eff
MC

– energy scale (using known m(Z) in Z→ ee data)
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Muon reconstruction
• track reconstructed from hits in muon detectors and tracker

– identified by hits in muon detectors

• muon trajectory bend by magnetic field 

→ curvature determines momentum 

• muon efficiency and momentum calibrated using (Z or J/ψ)→µµ decays)→µµ decays

• muon momentum scale known to <= 0.1%
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Jet reconstruction
• partons (quarks/gluons) are colored particles

– can not be observed directly

– shower of particles in final state

– set of particles close to each other                                                                   
form a jet

• a few different jet algorithms

• anti-k
T
 algorithm preferred lately

– Repeat combining pairs of particles with smallest ‘distance’(d
ij
) until d

ij
> d

B 

– One parameter: ‘radius’ R

Δ i , j
2 =ϕ2+ y2
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Jet reconstruction
• jets are calibrated to the truth jet energy scale 

– correct for non-compensation of the calorimeter, inactive material, signal 
losses, out-of-cone particles, etc.

– typical uncertainty O(101)%
– up to ~100 various sources of uncertainties 
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b-jet identification
• many analyses rely on identifying jets originating 

from heavy-quarks 

– P(t→ Wb)~99%, P(H→ bb)~60%

• b(c)-hadrons: 

– High mass ~5(2) GeV

– cτ ~ 450(120) μm 

– Decay length <L
xy

> @70 GeV     
~ 5(1.5)mm 

• tagging algorithm relies on 

– high jet mass

– secondary vertex

– large impact parameter 

– large decay multiplicity
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W boson/Higgs/Top-jets identification

• The inner structure of a quark/gluon 
initiated (light) jet very different from      
a jet of heavy object

– e.g. jet mass

• at high p
T
, the decay products of W/Z/H bosons or top quarks are Lorentz-

boosted and overlap 

– the reconstruction efficiency of decay products decreases

→ reconstruct instead as one large-radius jet (R =√(φ2+y2)  1.0)∼ 1.0)

R ≃2∗m / pT
e.g. for R=1.0 and top-quark:
 p

T
 ≥ 2*m

TOP
 ~ 350 GeV
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Missing-E
T
 reconstruction

• neutrinos escape the detection

• in transverse plane, p
T
=0 in initial state

– imbalance in final state → neutrino(s)

• to calculate missing E
T
, need to measure                                              

‘everything else’:

missing E
T
 = - ∑ E

T
 of all objects

• useful to separate signal vs. background                                                          
processes
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Physics Analysis ingredients
• in general, there are two different types of analyses:

– measurements: this ‘known’ process/property looks like this 

– searches: this new process exists or not

• typical steps:

– selection of candidate events 

– evaluation of background processes

– statistical analysis to extract parameter of interest

– evaluation of systematic uncertainties
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Physics Analysis: selection of events
• All physics analyses in particle physics are of statistical nature

– We don’t know to which process a given event in data corresponds
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Physics Analysis: selection of events
• have to devise selection criteria 

– typically try to increase Signal/Background ratio

– basic constrains come from detector coverage, available triggers

• e.g. leptons p
T
 > 25 GeV (trigger), |η| < 2.5 (tracker coverage)

– optimized for a given type of analysis
• searches: use loose cuts (try to maximize the selected signal events)
• precise measurements: trade decreased statistics for improved 

systematics 

top mass analysis: optimizing overall uncertainty

CDF combined search for Higgs boson
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Physics analysis: background evaluation
two main ways:

• estimated by MC simulation

– Most of the processes

• estimated from data

– Typically for mis-reconstructed events (fake leptons) or low probability events

– Example:
• ABCD method 

N D/N B=NC /N A ⇒ N D=N B∗NC /N A

D- signal concentrated region

A,B,C-bckg.(control) regions

2 independent(!) variables x,y
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Physics analysis: statistical analysis
• probably the most diverse part of physics analysis

• typical analyses, procedures used and examples of physics analyses:

W boson polarization
Search for Higgs→ WW

analysis Procedure example

cross-section Event counting Top pair cross-section

Differential cross-section unfolding Charged particle spectra

Property of particle Template fit W boson polarization

Low statistics analysis/search Machine learning for signal/
background separation

Higgs search

Search for physics beyond SM Setting limit on BSM model Dark Matter search

Charged particle spectra



47

Physics analysis: systematic uncertainties
one of the most important parts of the analysis

• need to consider O(10100) of various systematic sources

• the sources:

– detector related
• objects (leptons, jets, missing E

T
) have uncertainties in reconstruction, identification, 

determining energy scale, ...

– signal+background modeling
• theoretical cross-sections uncertainties

• hard process model, hadronization model, parton distribution functions,...

Top mass measurement: 
Summary of uncertainties
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Physics Results

• such plots are then the result of many (O(1010)) years of many (O(101000)) people’s 
effort in design, build and operation of: 

– Accelerator: LHC approved in 1995 

– Detector: ATLAS collaboration formed in 1994

– Computing: ~same time as detector

– Particular physics analysis: a few years effort
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Conclusions

• Particle physics experiments are international endeavours 

• They involve many (O(101000)) people with expertise in different areas 

(particle acceleration, detectors, computing, physics analysis)

• The physics analysis is just the last (and typically quickest) step among all
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BACKUP
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My current interests

• Top quark physics:

– Top pair cross-section measurement in all hadronic channel in boosted regime

• Can access high top quark p
T
 and top quark pair invariant mass 

– Top-antitop spin correlations
• Specific prediction by SM which could be modified in beyond SM model
• Evidence for 3σ deviation from SM in previous round of analysis



52

Various length scales
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Particles interactions in detector
• Different ways particle leave energy in detector:

– electrons: breamstrahlung
– photons: electron pair production
– muons:  ionization
– hadrons: ionization (charged particles), nuclear interactions
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