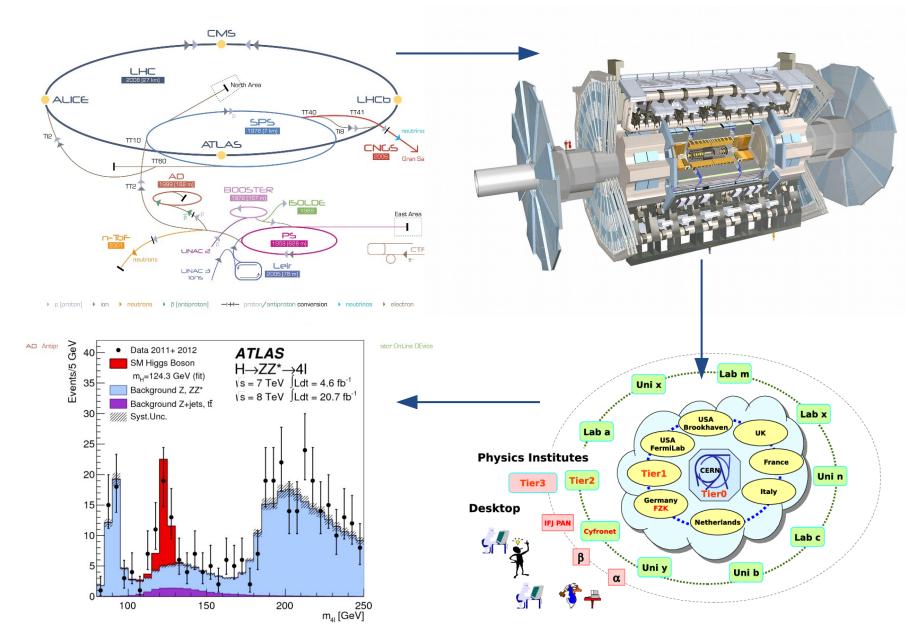

Classic Particle Physics Experiment

Roman Lysák Institute of Physics, Prague

AVA school 2020

What do we want to study?

Standard Model of Elementary Particles



Goal: study the matter and interactions at most fundamental level

 \rightarrow test all parts of Standard Model (SM)

 \rightarrow search for physics beyond SM (dark matter, supersymmetry, ...)

High energy particle experiment in nutshell

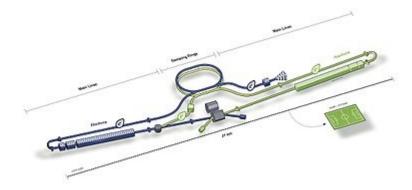
ACCELERATOR

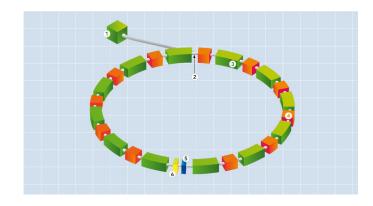
What requirements to put on accelerator?

Goal: produce as many interesting events as possible

- the highest possible energy of interaction (\sqrt{s})
 - higher energy \rightarrow can observe particles with higher mass (E=mc²)
 - Heissenberg's uncertainty principle:

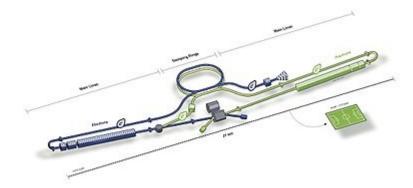
$$\Delta x \cdot \Delta p \sim \hbar$$

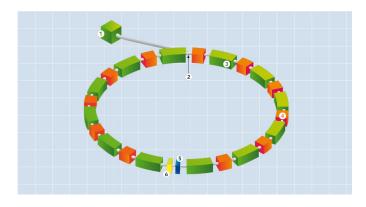

 \rightarrow the higher momentum (energy), the smaller scales can be probed


- the highest possible amount of collisions (luminosity)
 - the number of events for a given process:

 $N = \sigma \times Luminosity$

- σ the production rate of a given process (cross-section)
 - there is hidden the physics


How to get to high energy?



- linear vs. circular accelerators
 - circular colliders:
 - particles can be accelerated over many rotations \rightarrow higher energy
 - the beams can be reused \rightarrow larger integrated luminosity
 - there is fundamental limitation: accelerating charge particles radiate
 - Emitted power is inversely proportional to particle mass⁴
 - \rightarrow severe limitation for electrons
 - \rightarrow typically using circular synchrotrons for protons, linear for electrons

How to get to high energy? (2)

- Why as big as possible circular?
 - Particle trajectories have to stay within beamline
 - Energy of protons on stable circular orbit in magnetic field:

 $E[GeV] \approx 0.3 \times B[T] \times R[m]$

- The higher radius 'R', the higher energy
- For a given radius R:
 - Need the highest possible dipole magnets to bend the trajectory
 - − To bend protons at LHC (E= $\sqrt{s/2}$ =6.5 TeV)→ magnets with B=8T needed
 - This is limiting factor! \rightarrow the collision energy is set by the strength of dipole magnetic field
 - LHC: superconducting Niobium-Titanium coils cooled down to 1.9K 7

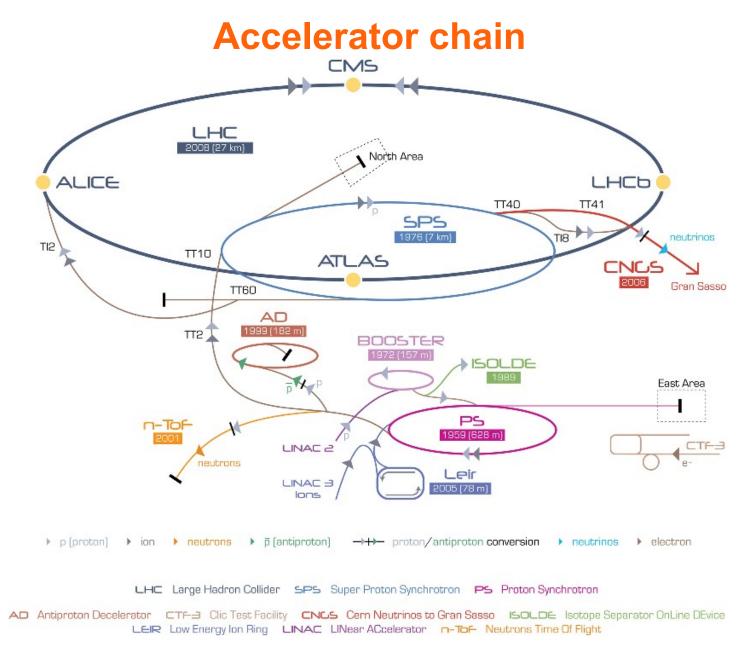
How to obtain high luminosity?

• The amount of data delivered is given by luminosity:

$$L = \int L_{inst}(t) dt$$

• Collision rate: instantaneous luminosity L(t)

$$L(t) = f \cdot n_B \frac{N_1 \cdot N_2}{Area} \cdot F = f \cdot n_B \frac{N_1 \cdot N_2}{4 \pi \sigma_x \sigma_y} \cdot F$$


f - revolution frequency (for a given radius it's ~constant) (LHC:11kHz)

 $n_{_{\rm B}}$ – number of bunches in a beam (~3000 \rightarrow bunch crossing every 25ns)

 N_1 , N_2 – number of particles in a bunch (~10¹¹ protons)

Area – transverse area of the bunch

- σ_x, σ_v root-mean-square of beam width in horizontal/vertical direction ($O(10 \mu m)$)
- F geometric factor of order $\mathcal{O}(1)$ to correct for crossing-angle of bunches
- Simultaneous optimization of all parameters to get the highest overall luminosity
 - e.g. stop running at certain small instantaneous luminosity and start new run

• Each accelerator typically increases energy of particles by order of $\mathcal{O}(10-100)$

My (only) direct accelerator experience

Measuring magnet misalignments at Tevatron (Jun'09)

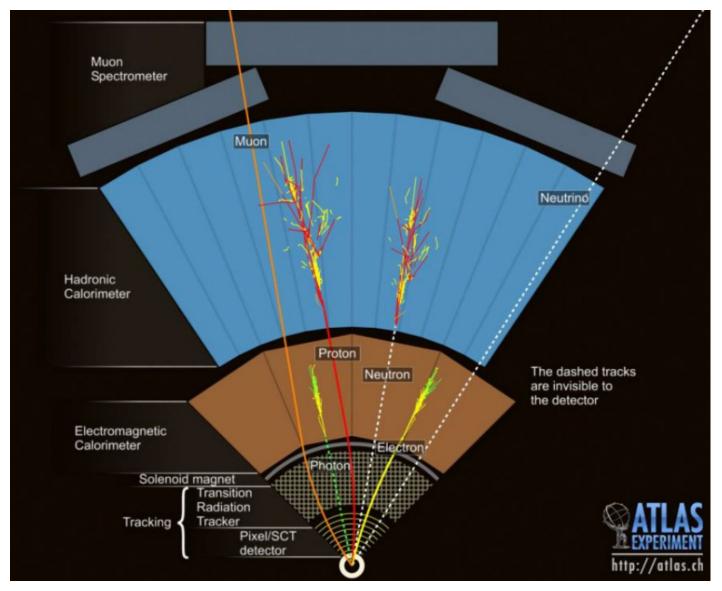
•

DETECTOR

What are we able to detect?

- Only 'stable' (within volume of detector) particles can be detected
 - Charged leptons: electrons, muons
 - Neutrinos not detected
 - Quarks can not be detected (colored particles)
 - But hadrons with long lifetime can (pions, kaons)
- Two ways to measure properties of particles interacting with matter:
 - Passively observing particles without disturbing the trajectory
 - charged particles interacting electromagnetically
 - Stop the particle and measure the energy deposited in the material
 - charged and neutral particles

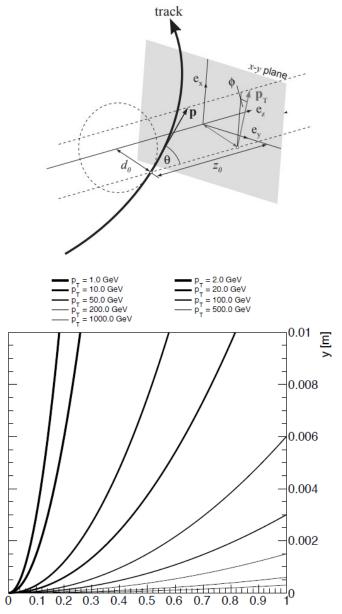
Detector structure


44m

General detector considerations

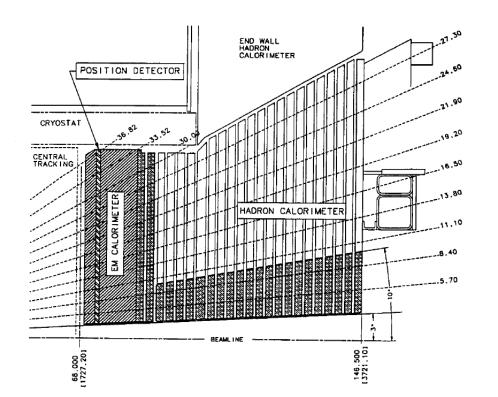
- design have to be optimized
 - e.g. more material in tracking detector have impact on reconstruction in outer parts of detector
- typical onion-like structure:
 - want to cover as much as possible (4π) in cover angle
 - want to distinguish between different particles
 - the part closest to interaction: tracking detectors
 - Must be before calorimeters which absorb particles
 - afterwards calorimeters (el, had)
 - electromagnetic:
 - must be first to absorb only elmag interacting particles (el., photons), to be able to distinguish from hadrons
 - hadronic: absorbing hadronically interacting particles
 - the last are muon detectors:
 - able to pass through all detectors

Particle detection



• Other hadrons (pions, haons) also absorbed in hadronic cal.

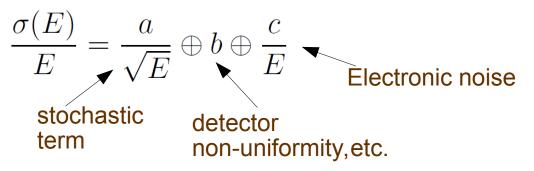
Tracking detectors


- measure hits along tracks of particles
 - elmag. interact. (ionization)
 - \rightarrow only charge particle tracks
 - \rightarrow Trajectory curved in magnetic field
- calculate momentum from the curvature of tracks
- typically, silicon semiconductor detectors used
 - excelent position resolution: O(10 μm)
 - radiation hardness
- typical particle energies: O(100 MeV-100 GeV)
- momentum resolution:

$$\phi \propto 1/R \propto 1/p \rightarrow \frac{dp}{p} \propto d \phi \cdot p \propto (const.) \cdot p \oplus d$$

bending
angle multiply
scattering

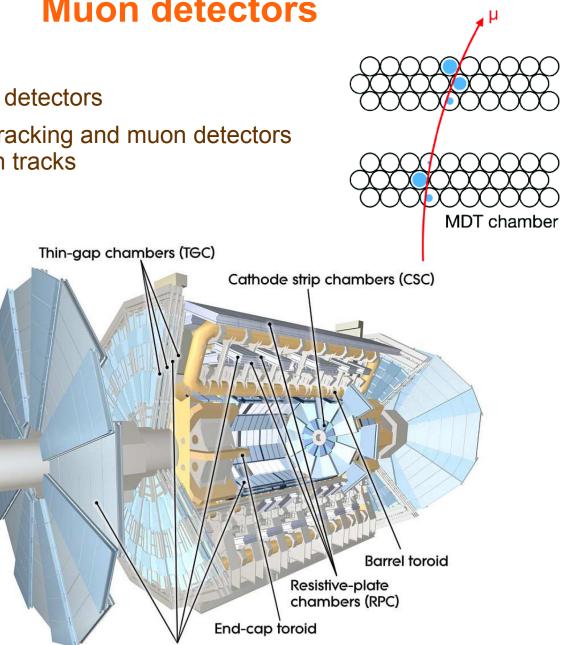
Calorimeters (1)


- measure energy by absorbing particles
- sampling calorimeters:
 - active medium (generates signal)
 - Scintillator (CDF el.-mag.), liquid (ATLAS el.-mag.: liquid Ar)
 - passive medium (absorber)
 - the material with high density, e.g. steel (CDF/ATLAS had.), lead (CDF/ATLAS el.-mag.)

CDF calorimeter

Calorimeters (2)

- electromagnetic vs. hadronic calorimeters:
 - electromagnetic vs. nuclear interactions
 - electrons of energies >~10 MeV predominantly lose energy by bremsstrahlung (photon radiation)
 - high-energy photons by e+e- pair production
 - hadronic calorimeters typically larger
- resolution: E~N particles in shower, stochastic process: $\sigma(N) = \sqrt{N} \rightarrow \sigma(E) \sim \sqrt{E}$:



- comparison to trackers:
 - calorimeters:
 - better resolution at high p_{τ}
 - can reconstruct neutral particles
 - trackers:
 - better p_{T} resolution at low p_{T} ,
 - better angular resolution, can distinguish pile-up

Muon detectors

Monitored drift tubes (MDT)

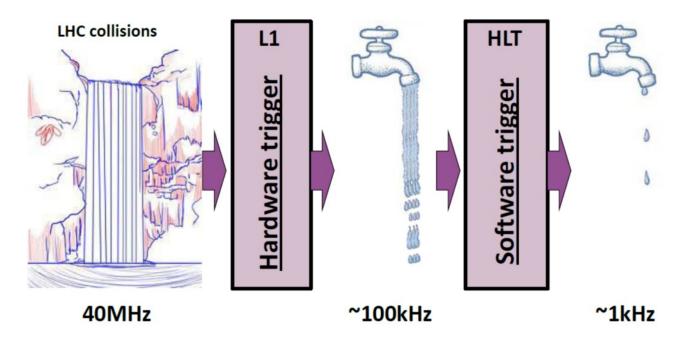
- help identify muons
- typically, drift tubes detectors
- combine hits from tracking and muon detectors to reconstruct muon tracks

19

Trigger (1)

proton - (anti)proton cross sections LHC collisions: each 25ns 10⁹ **J** Stirling \rightarrow colliding rate 40MHz 10⁸ 10⁸ ATLAS: 100M channels \rightarrow 1MB/event 107 10⁷ Tevatron LHC 10⁶ 10⁶ \rightarrow 40TB/s of data \rightarrow too much to save/process 10⁵ even if we could save all events 10⁴ not all events that interesting 10³ 10^{3} $\sigma_{int}(E_{\tau}^{jet} > \sqrt{s/20})$ (W/Z and Top have 6-8 orders smaller 10² cross-section than total cross-section) (qu 10¹ we don't need arbitrary many events ь 10⁰ $\sigma_{iet}(E_T^{jet} > 100 \text{ GeV})$ At some point, systematic uncertainty 10⁻¹ dominate the statistical ones 10-2 10⁻² 10-3 10-3 10-4 10-4 M_=125 Ge 10-5 10-5 10-6 10-6 10-7 10-7 10 0.1

20


√s (TeV)

E

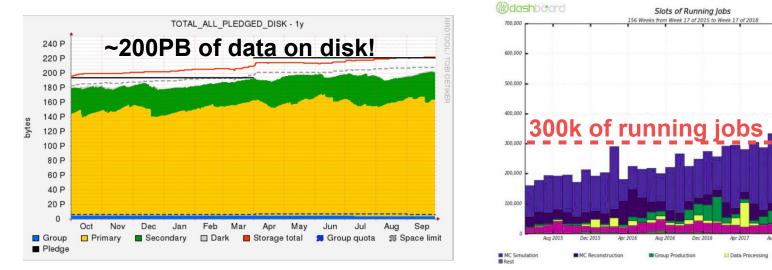
sec for

events

Trigger (2)

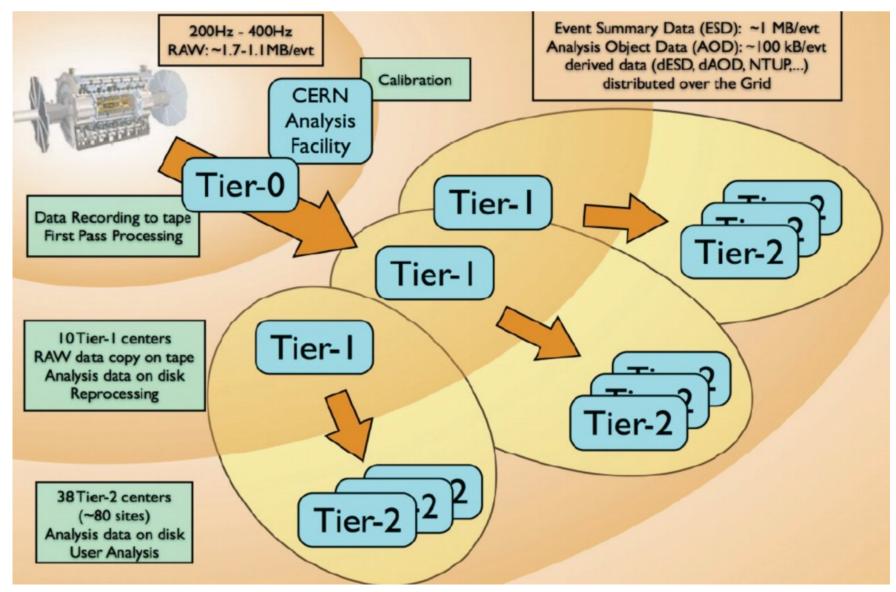
- trigger is responsible for real-time selection of the subset of events
- typically: trigger has 2-3 levels
 - 1st/2nd level: specific hardware using information only from part of the detector
 - 2nd/3rd level: software based
- we are able to save ~1kHz of events: O(100-1000) MB/s
 - ~4-5 orders of magnitude reduction of rate

COMPUTING

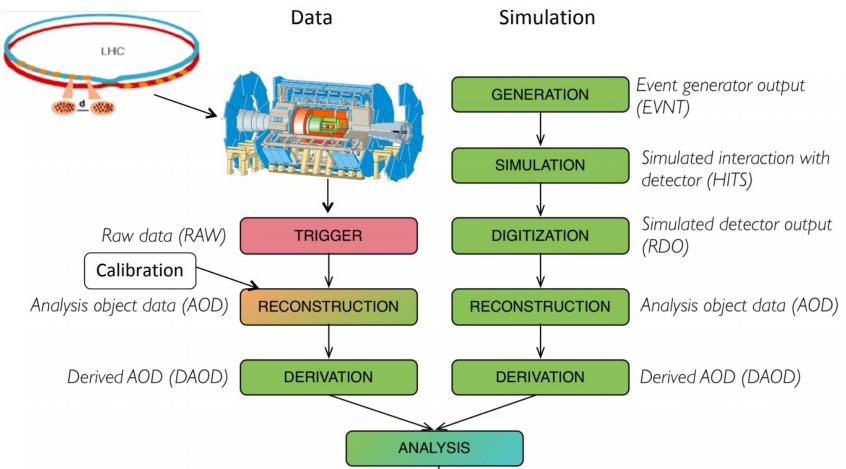

To set the stage

- we need to process and store
 - experimental data
 - Number of raw events: 1kHz * 200 days *50% efficiency ~ 10G ev./ year
 - Raw Size: 1MB/event * 10G events = 10 PB / year
 - simulated data
 - modeling processes, test of reconstruction, evaluation of systematics, ...
 - Typically, there are more than experimental data: more stats than in data, many processes, generators, settings, etc.

23

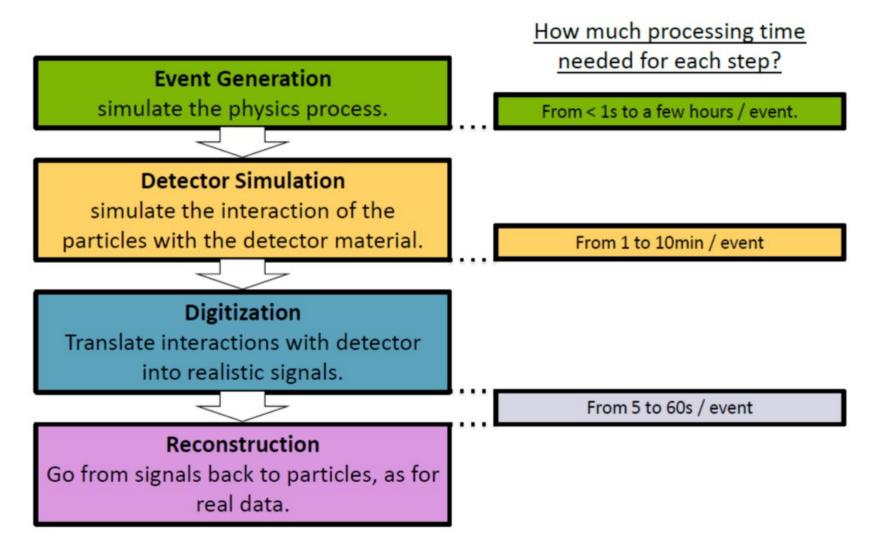

Analysis

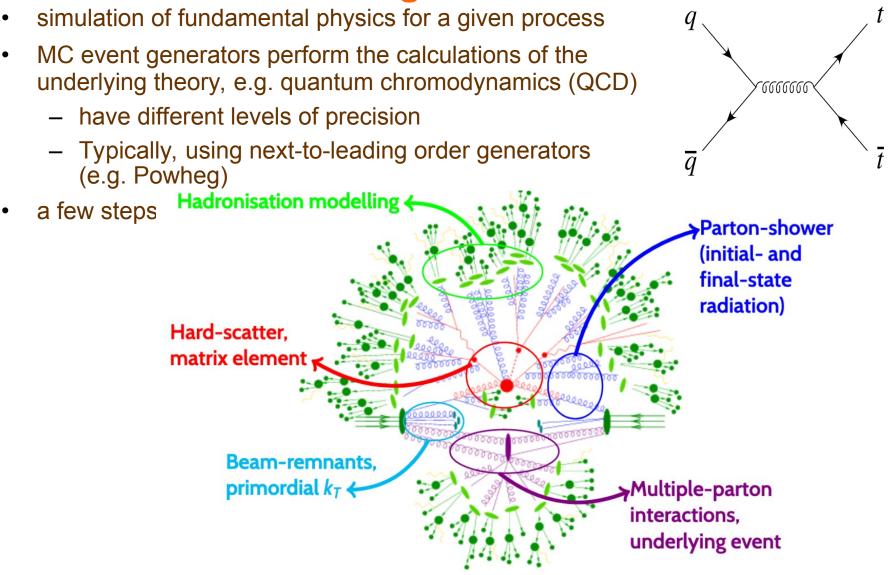
- typical processing time:
 - Data reconstruction: $\mathcal{O}(10)$ seconds / event $\rightarrow \mathcal{O}(1k-10k)$ CPUs / year
 - Simulation: O(1) minutes / event, but very broad range(~1min to ~few hours)



Computing model

• can not do all processing in one place \rightarrow need distributed computing (grid)

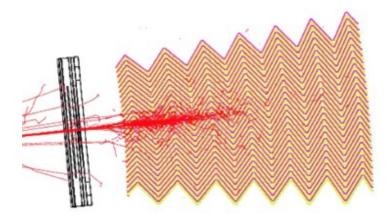

Typical steps in processing


- different physics groups typically need different objects, selections of events
 - \rightarrow using different set of files (in ATLAS: DAOD)
- final formats used in physics analysis typically ROOT ntuples
 - all-together $\mathcal{O}(100 \text{ GB} 1 \text{ TB})$ in size
 - \rightarrow still need processing on grid / local computing cluster

Simulation of events

• Simulation of events based on Monte-Carlo (MC) methods

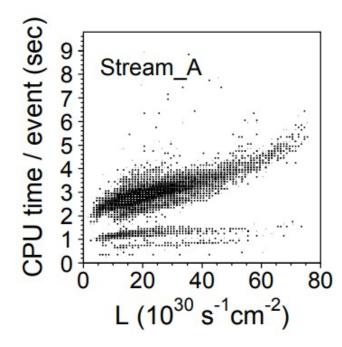
Event generation

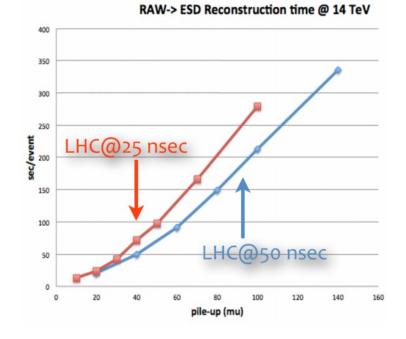


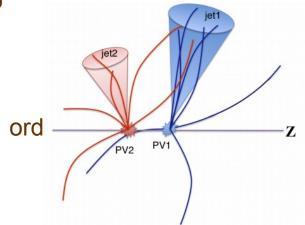
typically the fastest step in simulation: $\mathcal{O}(<1 \text{ s})/\text{event}$

Huge variations in processing time (up to a few hours/event)

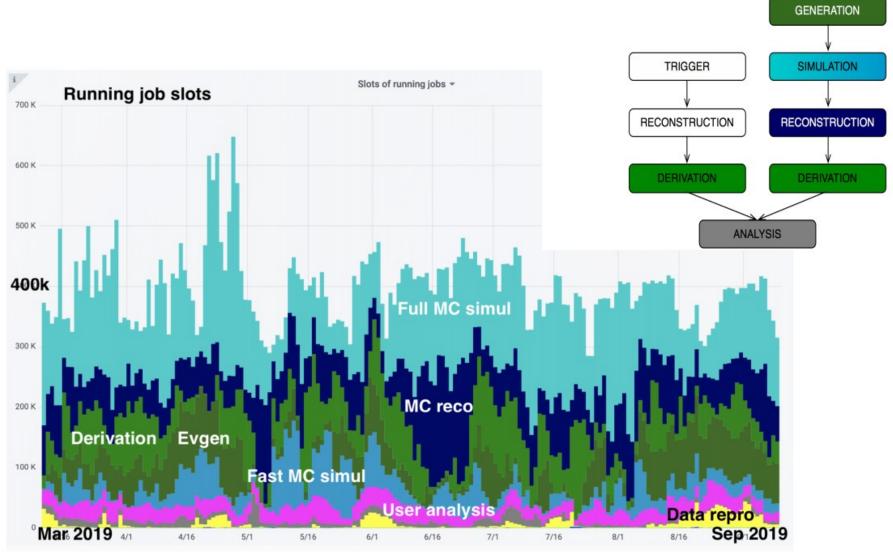
Detector Simulation


- simulate passage of generated particles through the detector
- using mostly Geant software
 - particle walks through the detector
 - most of the time spent in calorimeter
- where possible, using fast simulation
 - parameterize how a given particle will look like in detector (e.g. 'a pion will look such-and-such')
 - don't walk particle through detector, rather smear things directly in detector
 - typical speed-up $\mathcal{O}(10-100)$
- typically, most CPU consuming part of simulation $\mathcal{O}(1-10)$ minutes/event

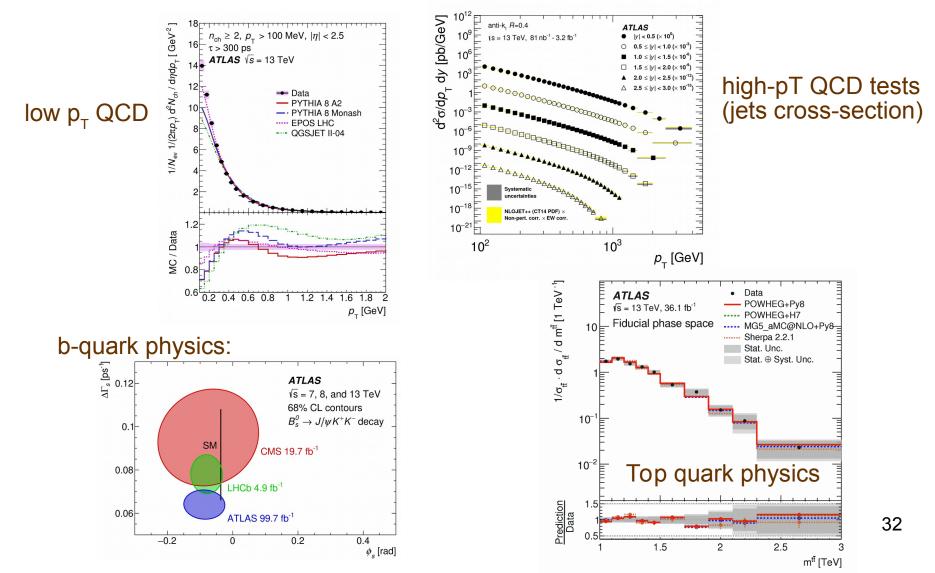



Sample	Full G4 Sim	Fast G4 Sim	Atlfast-II	Atlfast-IIF
Minimum Bias	551.	246.	31.2	2.13
tī	1990	757.	101.	7.41
Jets	2640	832.	93.6	7.68
Photon and jets	2850	639.	71.4	5.67
$W^{\pm} \rightarrow e^{\pm} \nu_e$	1150	447.	57.0	4.09
$W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$	1030	438.	55.1	4.13

Reconstruction and pile-up

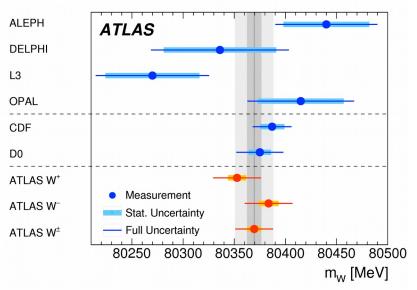

- taking RAW data from detector and turning them into analysis objects (electrons, muons, jets,...)
- multiply pp interactions (pile-up) possible when two proton bunches collide
 - Typically, one hard (high- p_T) collision and of $\mathcal{O}(10)$ of soft collisions
- processing time highly dependent on pile-up
 - Combinatorics in tracking

What kind of jobs are we running?

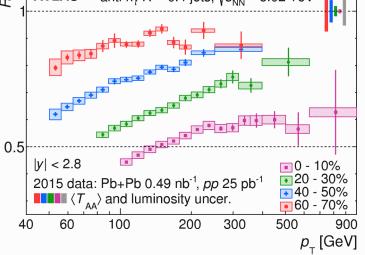


typically, detector simulation (full+fast) uses most of processing time

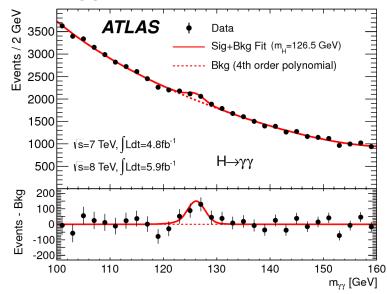
PHYSICS ANALYSIS

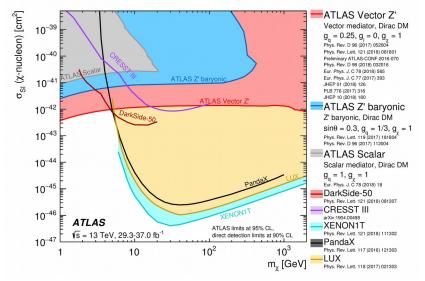

what kind of physics analysis possible?

- High-energy particle experiments are multipurpose experiments
 - \rightarrow test all parts of Standard Model (SM) and search for physics beyond SM

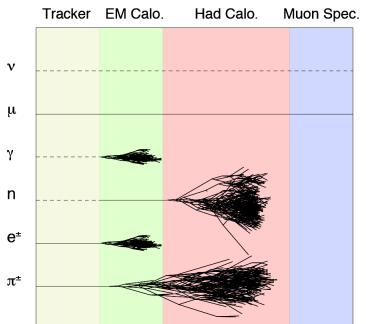


what kind of physics analysis possible? (2)

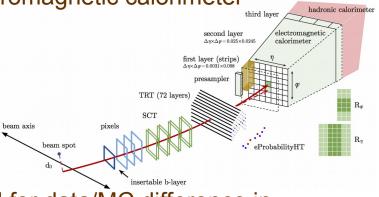

Electro-weak tests (W mass)


Heavy ion physics(e.g. jet suppression) ATLAS anti- $k_t R = 0.4$ jets, $\sqrt{s_{NN}} = 5.02$ TeV

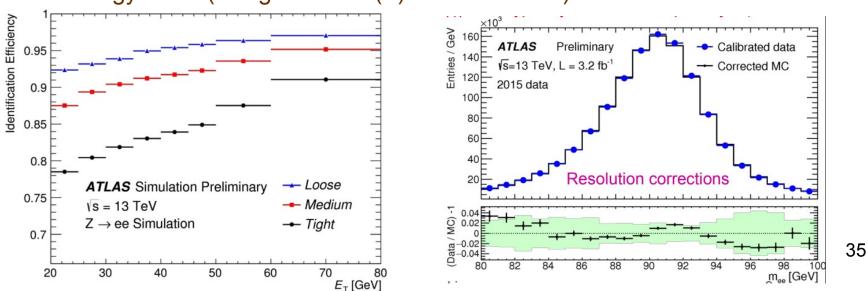
Higgs boson (observation)



Search for new physics (e.g. dark matter):

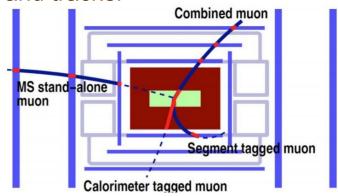

Which basic objects do we reconstruct?

- We actually measure only track hits of charged particles and the deposited energy in the calorimeter
- Basic objects reconstructed from tracks and deposited energy:
 - Leptons
 - Electrons
 - Muons
 - Taus
 - Photons
 - Jets
 - Showers of particles originating from quarks/gluons
 - Missing transverse momentum
 - provides info about neutrinos
- Most of the analyses use some combination of these reconstructed objects

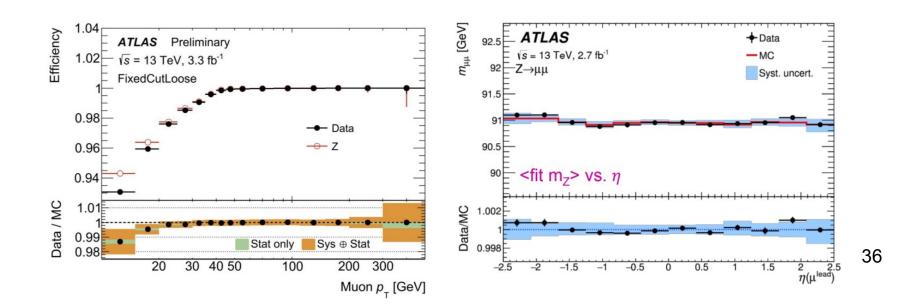


Electron & Photon reconstruction

- reconstructed from energy deposited in the electromagnetic calorimeter (clusters of calorimeter cells)
 - electron does have an associated track
 - photon does not

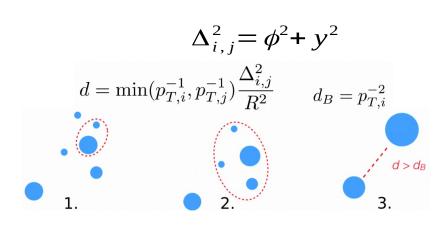


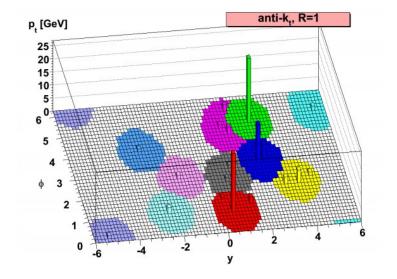
- the reconstructed electrons need to be corrected for data/MC difference in
 - probability of reconstruction (efficiency)
 - events in MC weighted with scale factor SF = eff_{data}/eff_{MC}
 - energy scale (using known m(Z) in $Z \rightarrow$ ee data)

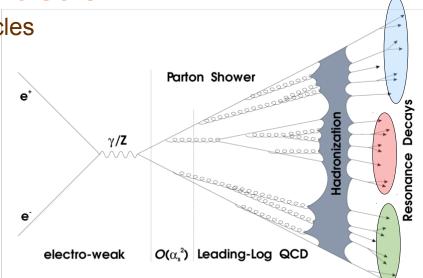


Muon reconstruction

- track reconstructed from hits in muon detectors and tracker
 - identified by hits in muon detectors
- muon trajectory bend by magnetic field
 → curvature determines momentum

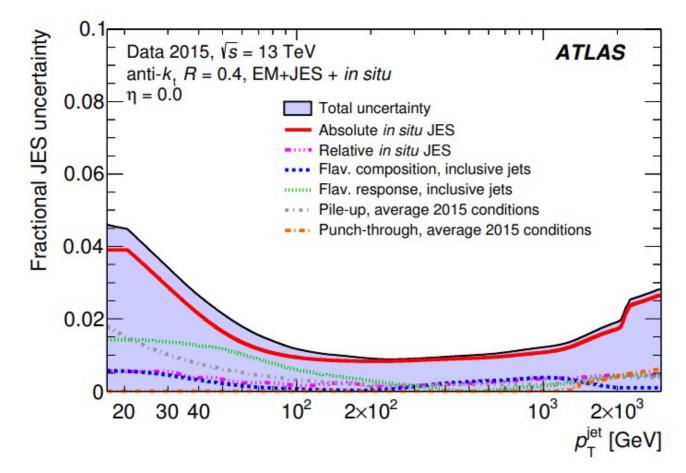


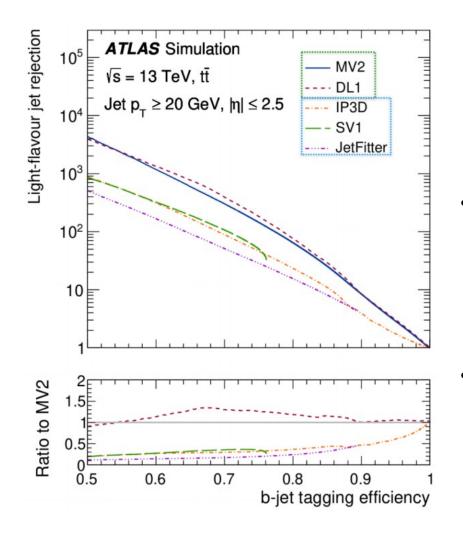

- muon efficiency and momentum calibrated using (Z or $J/\psi) \rightarrow \mu\mu$ decays
- muon momentum scale known to <= 0.1%

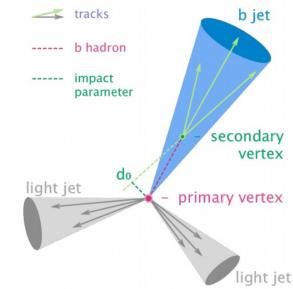


Jet reconstruction

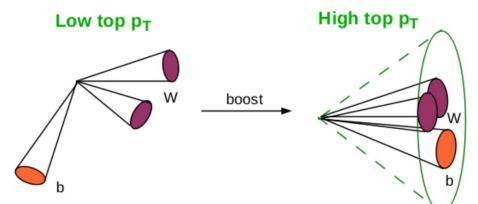
- partons (quarks/gluons) are colored particles
 - can not be observed directly
 - shower of particles in final state
 - set of particles close to each other form a jet
- a few different jet algorithms
- anti- k_{T} algorithm preferred lately
 - Repeat combining pairs of particles with smallest 'distance'(d_{ii}) until $d_{ii} > d_B$
 - One parameter: 'radius' R




Jet reconstruction

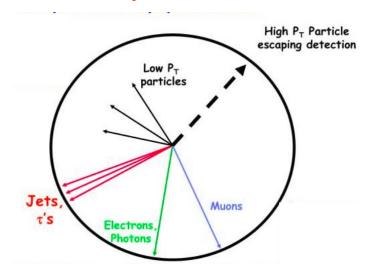

- jets are calibrated to the truth jet energy scale
 - correct for non-compensation of the calorimeter, inactive material, signal losses, out-of-cone particles, etc.
 - typical uncertainty O(1)%
 - up to ~100 various sources of uncertainties

b-jet identification


- many analyses rely on identifying jets originating from heavy-quarks
 - P(t \rightarrow Wb)~99%, P(H \rightarrow bb)~60%

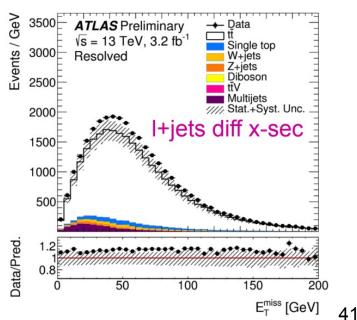
- b(c)-hadrons:
 - High mass ~5(2) GeV
 - ст ~ 450(120) μm
 - Decay length <L_{xy}> @70 GeV
 ~ 5(1.5)mm
- tagging algorithm relies on
 - high jet mass
 - secondary vertex
 - large impact parameter
 - large decay multiplicity

W boson/Higgs/Top-jets identification



 $R \simeq 2 * m/p_T$ e.g. for R=1.0 and top-quark: $p_T \ge 2^*m_{TOP} \sim 350 \text{ GeV}$

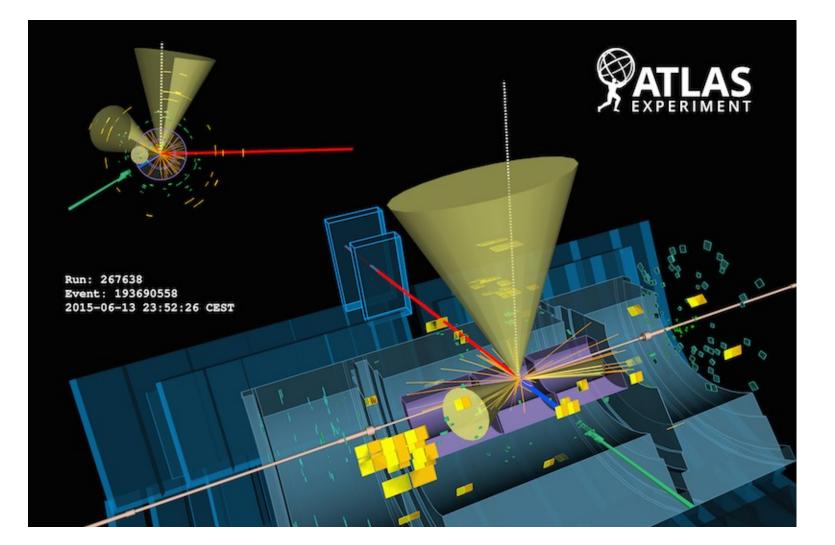
- at high p_{τ} , the decay products of W/Z/H bosons or top quarks are Lorentz-boosted and overlap
 - the reconstruction efficiency of decay products decreases
 - \rightarrow reconstruct instead as one large-radius jet (R = $\sqrt{(\phi^2+y^2)} \sim 1.0$)
- The inner structure of a quark/gluon initiated (light) jet very different from a jet of heavy object
 - e.g. jet mass


Missing-E_T reconstruction

- neutrinos escape the detection
- in transverse plane, $p_T=0$ in initial state
 - imbalance in final state \rightarrow neutrino(s)
- to calculate missing E_T, need to measure 'everything else':

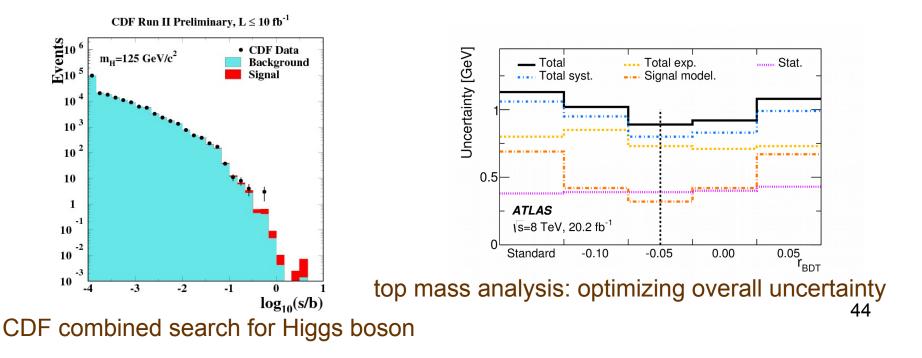
missing $E_T = -\sum E_T$ of all objects

 useful to separate signal vs. background processes



Physics Analysis ingredients

- in general, there are two different types of analyses:
 - measurements: this 'known' process/property looks like this
 - searches: this new process exists or not
- typical steps:
 - selection of candidate events
 - evaluation of background processes
 - statistical analysis to extract parameter of interest
 - evaluation of systematic uncertainties


Physics Analysis: selection of events

- All physics analyses in particle physics are of statistical nature
 - We don't know to which process a given event in data corresponds

Physics Analysis: selection of events

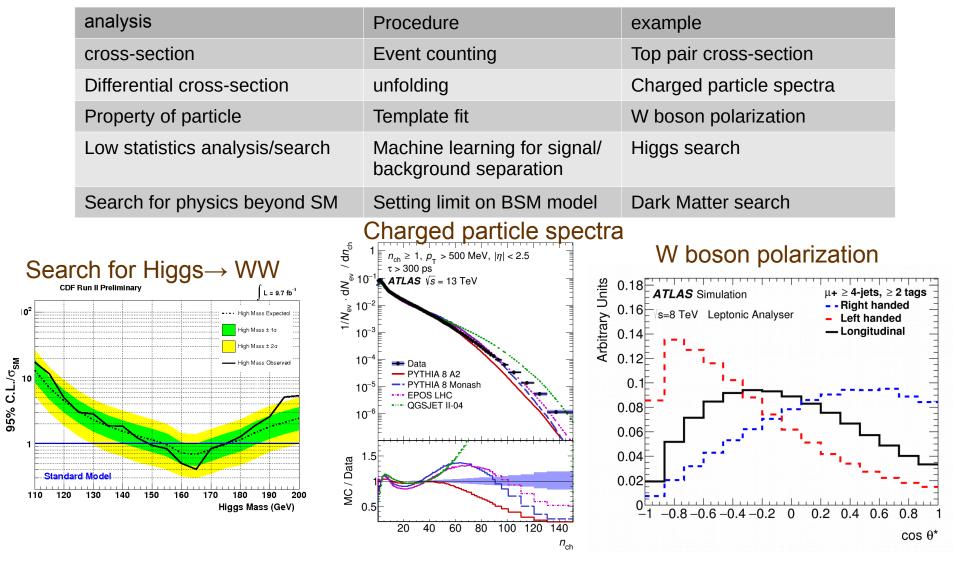

- have to devise selection criteria
 - typically try to increase Signal/Background ratio
 - basic constrains come from detector coverage, available triggers
 - e.g. leptons $p_T > 25$ GeV (trigger), $|\eta| < 2.5$ (tracker coverage)
 - optimized for a given type of analysis
 - searches: use loose cuts (try to maximize the selected signal events)
 - precise measurements: trade decreased statistics for improved systematics

Physics analysis: background evaluation

two main ways:

- estimated by MC simulation
 - Most of the processes
- estimated from data
 - Typically for mis-reconstructed events (fake leptons) or low probability events
 - Example:
 - ABCD method

D- signal concentrated region A,B,C-bckg.(control) regions

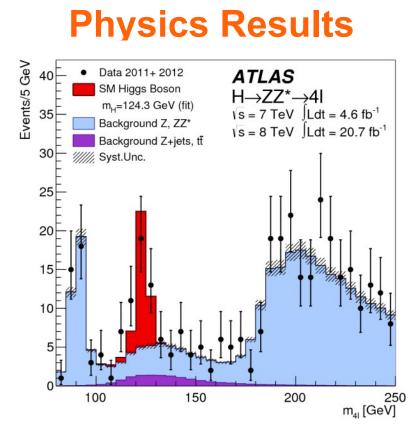

2 independent(!) variables x,y

 $N_D/N_B = N_C/N_A \Rightarrow N_D = N_B * N_C/N_A$

45

Physics analysis: statistical analysis

- probably the most diverse part of physics analysis
- typical analyses, procedures used and examples of physics analyses:

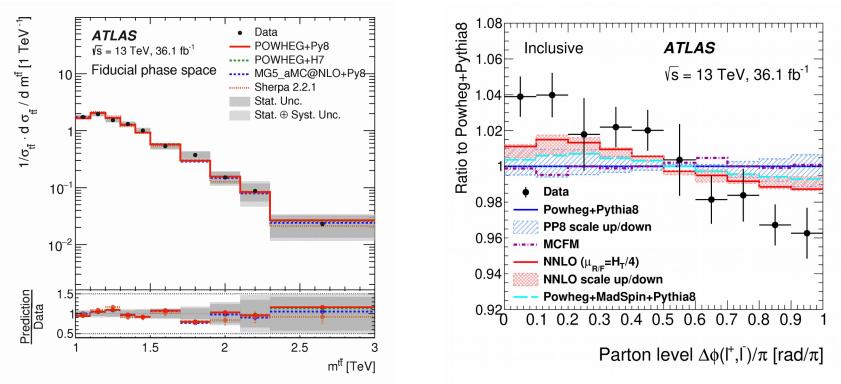

Physics analysis: systematic uncertainties

one of the most important parts of the analysis

- need to consider $\mathcal{O}(100)$ of various systematic sources
- the sources:
 - detector related
 - objects (leptons, jets, missing E_T) have uncertainties in reconstruction, identification, determining energy scale, ...
 - signal+background modeling
 - · theoretical cross-sections uncertainties
 - hard process model, hadronization model, parton distribution functions,...

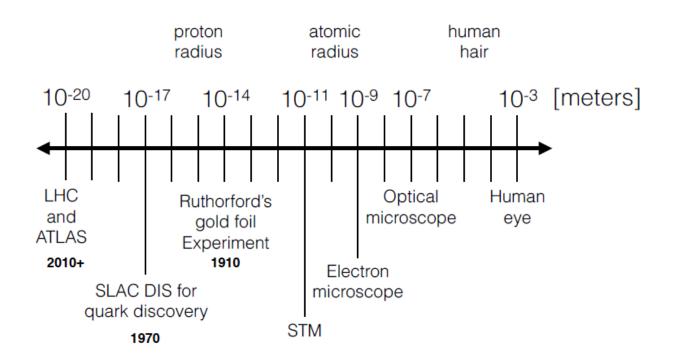
	$t\bar{t} \rightarrow lepton+jets$			$t\bar{t} \rightarrow dilepton$	Combination	
	$m_{\rm top}^{\ell+{\rm jets}}$ [GeV]	JSF	bJSF	m ^{dil} _{top} [GeV]	m_{top}^{comb} [GeV]	ρ
Results	172.33	1.019	1.003	173.79	172.99	
Statistics	0.75	0.003	0.008	0.54	0.48	0
$-Stat. comp. (m_{top})$	0.23	n/a	n/a	0.54		
– Stat. comp. (JSF)	0.25	0.003	n/a	n/a		
- Stat. comp. (bJSF)	0.67	0.000	0.008	n/a		
Method	0.11 ± 0.10	0.001	0.001	0.09 ± 0.07	0.07	0
Signal MC	0.22 ± 0.21	0.004	0.002	0.26 ± 0.16	0.24	+1.00
Hadronisation	0.18 ± 0.12	0.007	0.013	0.53 ± 0.09	0.34	+1.00
ISR/FSR	0.32 ± 0.06	0.017	0.007	0.47 ± 0.05	0.04	-1.00
Underlying event	0.15 ± 0.07	0.001	0.003	0.05 ± 0.05	0.06	-1.00
Colour reconnection	0.11 ± 0.07	0.001	0.002	0.14 ± 0.05	0.01	-1.00
PDF	0.25 ± 0.00	0.001	0.002	0.11 ± 0.00	0.17	+0.57
W/Z+jets norm	0.02 ± 0.00	0.000	0.000	0.01 ± 0.00	0.02	+1.00
W/Z+jets shape	0.29 ± 0.00	0.000	0.004	0.00 ± 0.00	0.16	0
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001	0.04 ± 0.00	0.07	+1.00
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001	0.01 ± 0.00	0.03	+0.23
Jet energy scale	0.58 ± 0.11	0.018	0.009	0.75 ± 0.08	0.41	-0.23
b-Jet energy scale	0.06 ± 0.03	0.000	0.010	0.68 ± 0.02	0.34	+1.00
Jet resolution	0.22 ± 0.11	0.007	0.001	0.19 ± 0.04	0.03	-1.00
Jet efficiency	0.12 ± 0.00	0.000	0.002	0.07 ± 0.00	0.10	+1.00
Jet vertex fraction	0.01 ± 0.00	0.000	0.000	0.00 ± 0.00	0.00	-1.00
b-Tagging	0.50 ± 0.00	0.001	0.007	0.07 ± 0.00	0.25	-0.77
$E_{ m T}^{ m miss}$	0.15 ± 0.04	0.000	0.001	0.04 ± 0.03	0.08	-0.15
Leptons	0.04 ± 0.00	0.001	0.001	0.13 ± 0.00	0.05	-0.34
Pile-up	0.02 ± 0.01	0.000	0.000	0.01 ± 0.00	0.01	0
Total	1.27 ± 0.33	0.027	0.024	1.41 ± 0.24	0.91	-0.07

Top mass measurement: Summary of uncertainties


- such plots are then the result of many (O(10)) years of many (O(1000)) people's effort in design, build and operation of:
 - Accelerator: LHC approved in 1995
 - Detector: ATLAS collaboration formed in 1994
 - Computing: ~same time as detector
 - Particular physics analysis: a few years effort

Conclusions

- Particle physics experiments are international endeavours
- They involve many (O(1000)) people with expertise in different areas (particle acceleration, detectors, computing, physics analysis)
- The physics analysis is just the last (and typically quickest) step among all



My current interests

- Top quark physics:
 - Top pair cross-section measurement in all hadronic channel in boosted regime
 - Can access high top quark $\boldsymbol{p}_{_{T}}$ and top quark pair invariant mass
 - Top-antitop spin correlations
 - Specific prediction by SM which could be modified in beyond SM model
 - Evidence for 3σ deviation from SM in previous round of analysis 51

Various length scales

Particles interactions in detector

- Different ways particle leave energy in detector:
 - electrons: breamstrahlung
 - photons: electron pair production
 - muons: ionization
 - hadrons: ionization (charged particles), nuclear interactions