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The Cold Valve isolates the ultra high
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mbar) from the HITRAP beamline. The
strong temperature gradient is possible
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Graphical output from SIMION simulation of PDT. The
effects of electrostatic lensing, magnetic mirror and
cyclotron motion can be seen.
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% X Simulated lon
0.2+ xxx§§:%(x Max HITRAP Emittance
xie%gy HITRAP beamline emmitance is about
0.1 A .
_ ngfx%ﬁx 5m mm mrad. Here the emittance of
$ 00 %g% an ion bunch in SIMION is shown to
%ﬁ& have the same profile at maximum
—0.1 A
%x convergence.
X% XX x
—0.2 A
K
—~4 3 0 2 4
y (mm)
Simulated Transmission with and without Magnetic Field
1.0 1 e, W + X No B Field
. . o + B Field
Strong lensing as the ions enter the ;| X
PDT limits the transmission. 2 .
However, the strong magnetic field §°° A 7 4
gradient significantly increases the 5, \
possible PDT voltages. £ : ¥
0.2
0.0 1 X X X X X +

3000 3250 3500 3750 4000 4250 4500 4750 5000
PDT High Potential (V)

Capacitance Determination

N N W
o o o

—_
o

Capacitance (pF)
—_
ol

Number of Parts

To determine the appropriate pulser for the PDT the capacitance as seen by the pulser is needed in addition
to the required pulse time and voltages. Here the capacitance was simulated with varying ground
conditions. as shown in blue. The capacitance converges to less than 50 pF when all neighboriung
conductors are added.
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Laser-microwave double-resonance
m=-4  technique to be used to measure the
“v.. ™ °  g-factor of heavy highly charged ions
w| io- such as H-like Bismuth and
' H- like Uranium.
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