
The   Ar    g-factor and fine structure splitting 
measurements of the ALPHATRAP experiment
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Experimental setup
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g-factor:

Relates the magnetic
moment to the spin

QED test and fundamental constants

Measurement  principle

ν =
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=
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ν

has to be measured Independent precision experiments [4,9]

Measure the Larmor frequency
in a well-known magnetic field

−

ν =

−−

Measure the free cyclotron frequency
to determine magnetic field

Single ion in a Penning trap

Ions can be stored in a Penning trap, which is a superposition
of a strong, homogeneous magnetic field and an electrostatic
quadrupolar potential. In the trap, the ions have three
independent modes, where the eigenfrequencies obey the
relation (invariance theorem[11]):

² = +² + ² + −²
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Frequency determination
The ion oscillation induces tiny image currents (~fA) in the trap
electrodes. A superconducting high impedance tank circuit
converts these currents into a measurable voltage signal. This
signal is then amplified by a cryogenic low noise amplifier and can
be detected frequency- or phase-resolved [12].

At thermal 
equilibrium a “dip” 
in the Johnson 
noise density of 
the tank circuit  
appears exactly 
at the ion's 
oscillation 
frequency. 
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The g-factor of highly charged ions
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Capture electrodes:
• potential switching
• dynamic capturing of ions 
• ion storage

Precision Trap (PT):
• seven-electrode trap
• large radius (9mm)

o Reduced image charge shifts
o Reduced effects of patch potentials

• homogeneous magnetic field
• measurement of 
• spin flip induction ( )

Analysis Trap (AT):
• five-electrode trap 
• ferromagnetic CoFe ring: 

inhomogeneity with =
• detection of spin orientation

Microwave horn antenna /Laser
incoupling

• Spin-flip excitation
• Laser cooling & spectroscopy
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In order to detect the spin direction, a
ferromagnetic ring in the analysis trap (AT)
produces a magnetic field inhomogeneity
(magnetic bottle), which couples the spin
orientation to the axial frequency.

Continuous Stern-Gerlach effect

Magne�c bo�le
B2 ~ 44000 T/m2

ferromagnetic ring
e

Analysis Trap (AT)B

The g-factor of boronlike argon 40Ar13+

The axial potential and therefore also the axial
frequency depend on the spin state of the
electron. Thus, a spinflip can be observed via
a change in the axial frequency given by

∆ ≈

Double Penning trap setup

• The g-factor of the bound electron is altered by bound-state
quantum electrodynamic (BS-QED) effects
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• BS-QED effects increase with the nuclear
charge state. Therefore few or single
electron systems are especially interesting
(fieldstrengths up to ~1018 V/m)

High precision measurements of
12C5+,16O7+, 28Si13+ and up to 48Ca17+

have been performed at the Mainz g-
factor experiment [2-7]

12C5+

−

16O7+ 28Si13+ 48Ca17+

= 2(1 + + + + + +…)

Hydrogen-like system

• BS-QED calculations can be tested with high-precision g-factor
measurements of electrons bound in highly charged ions [1]

ALPHATRAP @ MPIK - “pushing the limits”
• follow-up of the Mainz g-factor experiment
• access to Heidelberg-EBIT

 extend g-factor experiments to heavy-Z systems by using
heavy highly charged ions up to 208Pb81+

• probe QED in the most extreme fields, access fundamental constants

= 2 + ∆ . + ∆ + ∆

However, at high Z nuclear effects increase and
are poorely known. Comparison of the absolute
g-factor values is therefore unfavorable since
the error will most likely be dominated by the
uncertainty of the nuclear structure parameters.
Instead, one can compare specific weighted g-
factor differences, where nuclear effects can be
canceled by a weight parameter ξ [8].

By measuring g-factor differences of H-like
and Li-like ions, QED can be tested because
nuclear contributions are highly suppressed.

By measuring g-factor differences of H-like and
B-like ions will allow the determination of the
fine-structure constant α to high precision [8].

∆ ′ = ( )2 −ξ ∆ ′ = ( )2( )22 1/2
− ξ
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ν ≈ 37GHz
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B ≈ 4.

Zeeman splitting of  40Ar13+ The exact Larmor frequency is determined by 
shining in microwaves around the supposed Larmor
frequency. At the spinflip probability is maximized. 

Probing the Zeeman transition 
multiple times for different -ratios a 
resonance appears from which the 
g-factor is extracted by a Lorentzian
most likelyhood fit.

= 2 =
ν
ν

Theory
2015 [13]
2016 [14]
2018 [15]
2019 [16]

ALPHATRAP 2019 [16]

Our experimental result are in 
agreement with the current
theory at 10-7 level. 
Experiment precision at 10-9

Laser spectroscopy of 40Ar13+

The development of a new measurement technique [17] combinig laser spectroscopy with 
the continuous Stern-Gerlach effect (CSGE) allows precision spectroscopy on narrow
transitions, being independent of fluorescent detection.

Fine structure spectroscopy  in 40Ar13+ :

• Ion is prepared in “spin down“ state
• Laser excitation near 441nm transition
• Sponteneous decay to dark state with

“spin up“ indicates successfull excitation
• Spin state is analyzed with CSGE 

Linewidth dependent on axial ion
temperature (Doppler broadening)

∆ = 0
8 ln(2)

2

≈
≈
≈

≈ 9.5 ms

ALPHATRAP Review Paper
For further information check our recently published 
review paper (60 p.) with a detailed description 
of the experiment.

The paper is available as open access on:
https://doi.org/10.1140/epjst/e2018-800225-2
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