Mechanical Perturbations on SQUID based Cryogenic Current Comparator (CCC) - Measurements

F.Ucar@gsi.de

F. K. Ucar¹, D. M. Haider¹, T. Sieber¹

¹GSI, Darmstadt

The Cryogenic Current Comparator (CCC) extends the measurement range of traditional non-destructive current monitors down to a few nano-amperes using a superconducting magnetic field sensor (SQUID). The SQUID-signals are disturbed by different perturbation sources. One of them is the mechanical perturbation of SQUID-measurement, which is introduced by different parts of CCC components. With an accelerometer the vibration signals by CCC will be received and compared with SQUID signals to take improvments

Features

- Measurement and analysing of mechanical perturbations by CCC
- Influence of Vibrations on SQUID-Signal
- Improvements by new Cryostat

Superconducting magnetic shield – Field selection Superconducting pick-up coil – Signal transfer DC-SQUID – Measurement (Superconducting Quantum Interference Device)

Vibration analysis

- Mechanical vibrations lead to current noise: > 30 pA/√Hz (5 100 Hz)
- An accelerometer is mounted on the surface of cryostat (Figure top right)
- The vibration signals are compared with SQUID-signals (Figure bottom right)
- Mechanical perturbations from CCC components will identified (Figure bottom left)
- Spout holder an improvement for reliquefier coupling (Figure top left) will compared with vibrations on CCC-surface (Figure on right-hand side)

