

Developments for pulsed antihydrogen production towards direct gravitational measurement on antimatter

Mattia Fanì¹ on behalf of the AEgIS Collaboration 1. CERN, INFN Sezione di Genova and Università degli Studi di Genova

The AEgIS Experiment

- 1% precision $g(\overline{H})$ measurement
- H production: Charge exchange reaction
 - More narrow and well defined quantum state • σ proportional to the 4th power of the Ps Rydberg level
 - Allows antihydrogen pulsed production
 - Antihydrogen temperature is antiproton temperature

Internal charge collection Faraday cups cryo UHV

Laser diagnostic Scintillating fiber, etc...

Temperature measurement

External scintillators

Outer particle detection system

External plastic scintillators + PMTs (either in counting or analog mode)

Antiproton monitoring

- HPD + plastic scintillator
- Real time plasma manipulation online monitor (mult. detectors)

Plasma imaging system

Dedicated CsI scintillator system

in proper pick-up electrode

Transfer line scintillators

Induced charge during the passage

MCP phosphor

The AEgIS monitor detection and diagnostic system

CMOS camera

Antihydrogen detection

- Detection via outer scintillators NEW!
- The FACT detector

Positronium diagnostic Positron diagnostic and monitoring

- Ext. plastic scintillator
- with fast 12 bit r/o Photo-e+ detection NEW!
- Outer fast detector NEW!

H production trap p̄ catching trap

Antiproton capture and compression

- Remove significant part of the electrons
- Apply RW technique on multispecies plasma
- Use additional electron reduction Repeat in compression stages to reach lower radii

- Destructive measurement Detection= MCP + Phosphor + CCD
- The MCP measures radial distribution integrated along the trap axis
- Image intensity will be proportional to the number

Lowest antiproton cloud radius + highest density ever!

Storing antiproton for antihydrogen production

Accumulation and compression of several AD shots

- *Trade-off between stability and performances.
- *****Linear growth of the number of antiprotons cooled and compressed with number of AD bunches
- ****Best: 8 AD antiproton bunches**

Transport towards the production region

- **Ballistic transfer: 1.5 m, radially compressed cloud
- *In-flight dynamical centring and recapture (90% efficiency)
- *****Electrons loaded after antiprotons! (progressively removed to avoid centrifugal separation)

Multiple antihydrogen production cycles

- *****Up to 10⁶ antiprotons available for each production cycle
- *****Up to 60 production cycles per stored antiproton cloud

Antiproton plasma lifetime mainly affected by

- *Radial expansion rate
- (plasma angular moment is not conserved)
- *Losses in the residual gas
- **Control of the losses (typically ~30% in 20 cycles)

Positronium in 1T

Improved visibility in the target region

- **Target region modified to allow for significantly improved diagnostics
- **Mount the target as close as possible to the production trap

Rework of the laser diagnostics

- *New CMOS camera from outside vacuum for imaging of laser excitation position relative to positron implantation point
- *****Optical fibres for positioning coupled to a PMT for timing information
- + Phosphor, Macor with meshgrid

MCP added to the Ps diagnostics

*Move the MCP to add Ps cloud path to its \(\frac{\emptyset}{5}\) 20 view for imaging of released positrons and electrons

References: G. Dobrychev et al., 2007. AEgIS Proposal, CERN-SPSC-P-334; N. Zurlo and others (AEgIS Collaboration), Hyperfine Interactions, 240, 1, 18, (2019); S. Aghion et al. (AEgIS Collaboration), NIMB 362 (2015) 86–92; Aghion S. et al. (AEgIS Collaboration), 2018 Eur. Phys. J. D 72 76; Amsler C. et al. (AEgIS Collaboration), NIMB 457 (2019), 44-48; N. Zurlo and others (AEgIS Collaboration), Acta Physica Polonica B, 51, 1, 213-223, (2020).

