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PENNING TRAP
A Penning trap confines ions using a static quadrupo-
lar electric potential with a strong (∼2 T) axial mag-
netic field:

• Axial confinement from the E-field
• Radial confinement from the axial B-field
• Crystal rotates around the direction of B-field
• Axial motion: Harmonic motion parallel to mag-

netic field at ωz

• Radial motion: Superimposed circular magnetron
and modified cyclotron motions at ωm and ω′
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Schematic of the trap ge-
ometry: Ring electrode
split into 4 segments for
the axialisation field [2]

Internal diameter of the
trap is 21 mm

No micromotion helps to
give low heating rates

Sideband cooling al-
lows us to study
quantum dynamics of
small Coulomb crystals
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ABSTRACT

• Trapped ions are an ideal platform for
quantum simulation and measurement

• Previously we have demonstrated
resolved-sideband cooling of the ax-
ial motion of a single 40Ca+ ion in a
Penning trap, yielding a ground state
occupancy of 98(2)% [1]

• Cooling multiple modes from far beyond
the Lamb-Dicke regime (η2(2n+ 1) ∼ 6)
requires complex, multi-stage sideband
cooling sequences

• We have now demonstrated high ground-
state occupancy for both axial modes of a
two-ion crystal simultaneously

• We have also achieved coherent manip-
ulation of one and two ions in a Penning
trap

• Applications include multi-ion qubit quan-
tum operations in a Penning trap

CALCIUM-40 IONS

• Doppler cooling and detection are performed on
the S1/2 ↔ P1/2 transition at 397 nm

• Decay of the ion to the D5/2 and D3/2 states is
avoided by re-pumping with 854 nm and 866 nm
lasers, using a fibre EOM to drive all Zeeman com-
ponents

• Spectroscopy is performed on S1/2 ↔ D5/2 transi-
tion with a 729 nm laser (linewidth of < 1 kHz) [3]

SIDEBAND COOLING OF ONE ION
• For sideband cooling, the 729 nm laser is tuned to

the red sidebands of the S1/2 ↔ D5/2 transition
• Sidebands have minima for particular n values
• Complicated multistage cooling sequence used to

cool from: n̄Doppler ∼ 55 to n̄SBC = 0.02(2)
• Heating rate is measured to be ∼ 2.5 phonons/s
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SIDEBAND COOLING OF A TWO-ION COULOMB CRYSTAL

• For two ions: Two orientations are possible
• String: Ions align along the magnetic field direction;

axial strength < radial strength
• Planar crystal : Ions rotate in the radial plane (per-

pendicular to B); axial strength > radial strength
• Both configurations exhibit in-phase (COM) and

out-of-phase axial motional modes
• With two modes the Doppler spectrum is much

more complicated than a single ion spectrum
• Both motions start well outside the Lamb-Dicke

regime
• Simultaneous cooling of both modes requires a

complex cooling sequence due to dependence of
every sideband strength on both quantum numbers

• Spectrum of sideband-cooled two-ion string (right)
gives n̄COM = 0.30(4) and n̄B = 0.07(3) -300 -200 -100 0 100 200 300
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COHERENT MANIPULATION OF A SIDEBAND COOLED ION

• Rabi oscillations on the carrier transition after side-
band cooling gives optical coherence time∼ 1.4 ms

• Ramsey plot gives a similar coherence time
• Coherence time increased using UDD techniques
• Motional coherence time is ∼ 0.3 s
• Ion motion can be ‘heated’ by driving the first blue

sideband after sideband cooling
• Final state of the motion is at one of the minima of

the sideband strengths (shown in plot above)
• Spectrum (right, upper pane) shows a missing side-

band, giving n̄ ∼ 288 with ∆n ∼ 14 here
• Rabi oscillations on the 4th red sideband (right,

lower pane) show coherent oscillations even at this
high value of n

• Coherent states of motion can be generated using
a bichromatic beam
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OUTLOOK
Summary

• We have cooled one and two ions to their motional
ground states

• Low heating rates for one and two ions, few
phonons per second

• We have observed coherent dynamics of the mo-
tional and electronic states of the trapped ions.

Future work

• Two-qubit gates with the sideband-cooled ion crys-
tal

• Sideband cooling of the radial motion: Simultane-
ous cooling of cyclotron and magnetron modes

• Extension of sideband cooling to a bigger crystals
including 3D structures

CONTACT INFORMATION
Web www.imperial.ac.uk/ion-trapping
Email r.thompson@imperial.ac.uk
Phone +44 20 7594 3606
Twitter @iontrapimperial
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