Towards Sympathetic Cooling of Single Protons and Antiprotons

Markus Wiesinger ${ }^{\text {ab, }}$, Matthew Bohman ${ }^{\text {ab, }, ~ C h r i s t i a n ~ S m o r r a ~}{ }^{\mathrm{b}}$, Matthias Borchert ${ }^{\mathrm{b}, \mathrm{c},}$, Jack Devlin ${ }^{\mathrm{b}, \mathrm{d},}$, Stefan Erlewein ${ }^{\text {ab,d, }, ~ J a m e s ~ H a r r i n g t o n ~}{ }^{\text {a,b }}$, Andreas Mooser ${ }^{\text {a }}$, Elise Wursten ${ }^{\text {b,d }}$, Klaus Blaum ${ }^{\text {a }}$, Yasuyuki Matsuda ${ }^{e}$, Wolfgang Quint ${ }^{f}$, Jochen Walz ${ }^{\text {g.h }}$, Stefan Ulmer ${ }^{\text {b }}$

Max-Planck-Institut für Kernphysik, Heidelberg, Germany
${ }^{\text {d }}$ CERN, Geneva, Switzerland.
${ }^{\mathrm{g}}$ Helmholtz-Institut Mainz, Mainz, Germany

Ulmer Fundamental Symmetries Laboratory, RIKEN, Wako, Saitama, Japan. Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan. ${ }^{\mathrm{h}}$ Institut für Physik, Johannes Gutenberg-Universität, Mainz, Germany.

Motivation

Precise comparisons of the fundamental properties of protons and antiprotons, such as magnetic moments and charge-to-mass ratios, provide stringent tests of CPT invariance, and thus, matter-antimatter symmetry.
Using advanced Penning-trap methods, we have recently determined the magnetic moments of the proton and the antiproton with a relative precision of 0.3 p.p.b. and 1.5 p.p.b., respectively $[1,2]$.

Both experiments rely on sub-thermal cooling of the particle's modified cyclotron mode using feedback-cooled tuned circuits. We aim to replace this time-consuming process (several hours) by sympathetic cooling with laser-cooled beryllium ions.

Penning Trap

A homogeneous magnetic field and an electric quadrupole field confine a charged particle in the center of the trap.
$\vec{B}=B \vec{e}_{z} \quad \vec{E}=U_{r} c_{2}\left(\rho \vec{e}_{\rho}-2 z \vec{e}_{z}\right)$ The particle motion is a superposition of three oscillations, the frequencies of which are related to the free cyclotron frequency v_{c} by the invariance theorem [3]

Leibniz Univeristät Hannover, Hannover, Germany GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.

Image Current Detection

The axial motion of the trapped (anti)pro ton is detected by monitoring the image current induced in an electrode.

Currents ($\sim \mathrm{fA}$) are transformed into measureable voltages by a superconducting resonant circuit with high Q and the voltage is amplified by a cryogenic amplifier. At the frequency v_{z} the the particles shorts the thermal noise of the resonator.
Sideband coupling allows to measure the frequencies of the radial motion.

Spin State Detection

Based on the Continuous Stern-Gerlach effect [5]: A magnetic bottle $B=B_{2} Z^{2}$ is superimposed to the axial magnetic field which leads to a harmonic z-dependent energy difference for the two spin states
A spin transition shifts the axial frequency by 233 mHz out of 550 kHz and allows the determination of the spin state.
The small magnetic moment of the proton makes this measurement especially challenging:
$\frac{\mu_{B} / m_{e}}{\mu_{p} / m_{p}} \approx 10^{6}$

The Cooling Trap

Its purpose is to sympathetically cool single protons and antiprotons by coupling them to laser-cooled beryllium ions $[6,7]$.

Resonantly coupling laser-cooled ions to single (anti)protons across a common endcap electrode provides a novel cooling mechanism for particles without suitable transitions for laser cooling
The trap consists of two identical 5-pole Penning traps, connected by a common endcap:
A cloud of Be^{+}ions (green) is laser cooled to the Doppler-limit temperature of several mK , and interacts with a single proton (grey) via the image charge induced on the common endcap electrode.

Fluorescence Detection
Silicon photomultipliers (SiPMs) are used as single photon sensitive detectors for fluorescence photons.

They are located inside the trapcan at a distance of 12 mm from the Be ion cloud and operated at a tempe rature of 4 K .

Narrow slits in the electrode allow fluorescence photons to reach the detectors.

At 4 K a dark count rate smaller than 10 per second is observed.

References

[1] Schneider, G. et al., Science 358, 1081 (2017)
[2] Smorra, C. et al., Nature 550, 371 (2017)
[3] Brown, L.S. \& Gabrielse, G., Phys. Rev. A 25, 2423 (1982)
[4] Mooser, A. et al., Phys. Rev. Lett. 110, 140405 (2013)

Recent Results: Laser Cooled Be^{+}Ions
A cloud of Be^{+}ions is prepared in the cooling trap (CT).
The axial mode is coupled to the radial magnetron mode using a drive at the sum frequency and a double dip is observed at the detector.
Scanning the laser frequency across the resonance, cooling can be observed simultaneously on the fluorescence signal and the image current detector.
Close to the resonance the dip dis appears, because Be^{+}ions are no longer in thermal equilibrium with the detector.

Funding

Supported by the Helmholtz-Gemeinschaft, the RIKEN Chief Scientist Program, the RIKEN Pioneering Project Funding, the RIKEN FPR Funding, the RIKEN JRA Program, the Max Planck Society, and the EU (Marie Sklodowska-Curie grant agreement No 721559)

