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Photocathode electron emission is strongly affected by the light 
source an particularly the illumination wavelength. Optimisation of the 
light source system is critical to minimise Mean Transverse Energy 
(MTE) of an electron source. We present commissioning studies for 
an upgrade to the Transverse Energy Spread Spectrometer (TESS) 
[1] light source system showing this effect on the MTE for 
photoelectrons emitted from Zr (0001) single crystal photocathodes 
as a function of illumination wavelength at room and cryogenic 
temperatures.

The optical system was compared with a laser to calibrate the change in the wavelength of the 
monochromator, measuring the light intensity at the end of the system.  

This work demonstrates the impact on MTE for Zr (0001) at two different temperatures.  
Our MTE measurements on Zr (0001) decrees with temperature. 

This work helped to be prepared for a collaboration with CERN, which will include working with 
Cs-Te and Cs-K-Sb photocathodes grew in CERN and transported to Daresbury Lab. Working 

with these kind of photocathodes requires the versatility of changing wavelengths from the visible 
to UV spectrum, this is why a commissioning of the optical system is so important.
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Figure 1: Schematic diagram of the modified TESS photoemission electron 
detector. LEFT: mounted detector assembly. RIGHT: exploded view shown.

The electron emission data were 
analysed to generate a series of 
transverse energy distribution curves 
(TEDC) for each temperature.   

The photocathode was cooled with 
LN2 in TESS. Figure 5 shows the 
MTE values vs wavelength of the 
photocathode Zr (0001) at two 
different temperatures.

Figure 4: Electron emission images for two different temperatures at different illumination 
wavelengths.  The accelerating voltage and flight distance are the same for all images, 

the image size being governed by photoelectron MTE and brightness by photocathode QE.
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Figure 5: MTE as a function of illumination wavelength 
for a Zr (0001) photocathode at room and cryogenic 

temperatures. 
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Figure 2: TOP. Optics board, implementing the new plasma light 
source connected to the new monochromator, passing through the 

optical lens optimised for UV. BOTTOM. TESS system. 
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COMMISSIONING THE MONOCHROMATOR

ZIRCONIUM PHOTOEMISSION
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Figure 3: TOP Left: LASER comparison with plasma light source for monochromator calibration. 
BOTTOM LEFT: Monochromator wavelength steps vs intensity. RIGHT: Slits aperture intensities.
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1.- L.B.Jones,K.J.Middleman et al.; Proc.FEL’13,TUPS033, 290 – 293 


