Helicity Distributions and Orbital Angular Momentum at Small x

Yuri Kovchegov

The Ohio State University

Based on work done with Dan Pitonyak and Matt Sievert (2015-2018) and with Florian Cougoulic (2019).

Outline

- Goal: understanding the proton spin coming from helicities and OAM of small-x quarks and gluons.
- Quark Helicity ("simplify-evolve-solve" prescription):
 - Quark helicity distribution at small x
 - Small-x evolution equations for quark helicity
 - Small-x asymptotics of quark helicity
- Gluon Helicity:
 - Gluon helicity distribution at small x
 - Small-x evolution equations for gluon helicity
 - Small-x asymptotics of gluon helicity TMDs
- Quark and Gluon OAM at small x: results.
- Valence quark transversity at small x.
- Conclusions

Introduction and goals

Proton Spin Puzzle

• Helicity sum rule (Jaffe-Manohar form):

$$\frac{1}{2} = S_q + L_q + S_g + L_g$$
with the net quark and gluon spin

$$S_q(Q^2) = \frac{1}{2} \int_{0}^{1} dx \, \Delta \Sigma(x, Q^2)$$

• The helicity parton distributions are

$$\Delta f(x, Q^2) \equiv f^+(x, Q^2) - f^-(x, Q^2)$$

with the net quark helicity distribution

$$\Delta \Sigma \equiv \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

- L_q and L_g are the quark and gluon orbital angular momenta

Our goal

- The goal is to constrain theoretically the amount of proton spin and OAM coming from small x.
- Any existing and future experiment probes the helicity distributions and OAM down to some x_{min}.

$$S_{q}(Q^{2}) = \frac{1}{2} \int_{0}^{1} dx \,\Delta\Sigma(x, Q^{2}) \qquad S_{g}(Q^{2}) = \int_{0}^{1} dx \,\Delta G(x, Q^{2})$$
$$L_{q+\bar{q}}(Q^{2}) = \int_{0}^{1} dx \,L_{q+\bar{q}}(x, Q^{2}) \qquad L_{G}(Q^{2}) = \int_{0}^{1} dx \,L_{G}(x, Q^{2})$$

• At very small x (for the proton), saturation sets in: that region likely carries a negligible amount of proton spin. But what happens at larger (but still small) x?

Our goal

- Ultimately the aim is to make predictions for helicity distributions at EIC.
- If the predictions are not too far off, one could extrapolate the theory curves down to x=0, getting a (hopefully) good estimate for quark and gluon spin coming from small x.
- For OAM the story is more complicated, but perhaps we may be able to constrain small-x OAM this way too.

Quark Helicity at Small x (flavor-singlet case)

Yu.K., M. Sievert, arXiv:1505.01176 [hep-ph] Yu.K., D. Pitonyak, M. Sievert, arXiv:1511.06737 [hep-ph], arXiv:1610.06197 [hep-ph], arXiv:1610.06188 [hep-ph], arXiv:1703.05809 [hep-ph], arXiv:1808.09010 [hep-ph]

Quark Helicity TMD

• We start with the definition of the quark helicity TMD with a futurepointing Wilson line staple.

$$g_{1L}^q(x,k_T^2) = \frac{1}{(2\pi)^3} \frac{1}{2} \sum_{S_L} S_L \int d^2 r \, dr^- \, e^{ik \cdot r} \langle p, S_L | \bar{\psi}(0) \, \mathcal{U}[0,r] \, \frac{\gamma^+ \gamma^5}{2} \, \psi(r) | p, S_L \rangle_{r^+=0}$$

 At small-x, in anticipation of the shock-wave formalism, we rewrite the quark helicity TMD as (in A⁻=0 gauge for the + moving proton)

$$g_{1L}^q(x,k_T^2) = \frac{2p^+}{(2\pi)^3} \int d^2\zeta \, d\zeta^- \, d^2\xi \, d\xi^- \, e^{ik \cdot (\zeta-\xi)} \left(\frac{1}{2}\gamma^+\gamma^5\right)_{\alpha\beta} \left\langle \bar{\psi}_\alpha(\xi) \, V_{\underline{\xi}}[\xi^-,\infty] \, V_{\underline{\zeta}}[\infty,\zeta^-] \, \psi_\beta(\zeta) \right\rangle$$

where the fundamental light-cone Wilson line is

$$V_{\underline{x}}[b^-, a^-] = \operatorname{P} \exp\left\{ ig \int_{a^-}^{b^-} dx^- A^+(x^-, \underline{x}) \right\}$$

• Only one diagram contributes, giving

$$g_{1L}^q(x,k_T^2) = \frac{4N_c}{(2\pi)^6} \int d^2\zeta \, d^2w \, d^2y \, e^{-i\underline{k}\cdot(\underline{\zeta}-\underline{y})} \int\limits_{\Lambda^2/s}^1 \frac{dz}{z} \, \frac{\underline{\zeta}-\underline{w}}{|\underline{\zeta}-\underline{w}|^2} \cdot \frac{\underline{y}-\underline{w}}{|\underline{y}-\underline{w}|^2} \, G_{\underline{w},\underline{\zeta}}(zs)$$

where $G_{w\zeta}$ is the polarized dipole amplitude (defined on the next slide).

• Here s is the cms energy squared, Λ is some IR cutoff, underlining denotes transverse vectors, z = smallest longitudinal momentum fraction of the dipole momentum out of those carried by the quark and the antiquark

Polarized Dipole

• All flavor-singlet small-x helicity observables depend on one object, "polarized dipole amplitude":

• Double brackets denote an object with energy suppression scaled out:

$$\left<\!\!\left< \mathcal{O} \right>\!\!\right>(z) \equiv zs \left< \mathcal{O} \right>(z)$$

Polarized fundamental "Wilson line"

 To complete the definition of the polarized dipole amplitude, we need to construct the definition of the polarized "Wilson line" V^{pol}, which is the leading helicity-dependent contribution for the quark scattering amplitude on a longitudinally-polarized target proton.

• At the leading order we can either exchange one non-eikonal t-channel gluon (with quark-gluon vertices denoted by blobs above) to transfer polarization between the projectile and the target, or two t-channel quarks, as shown above.

Polarized fundamental "Wilson line"

• In the end one arrives at (KPS '17; YK, Sievert, '18; cf. Chirilli '18)

$$\begin{split} V_{\underline{x}}^{pol} &= \frac{igp_{1}^{+}}{s} \int_{-\infty}^{\infty} dx^{-} V_{\underline{x}}[+\infty, x^{-}] F^{12}(x^{-}, \underline{x}) V_{\underline{x}}[x^{-}, -\infty] \\ &- \frac{g^{2} p_{1}^{+}}{s} \int_{-\infty}^{\infty} dx_{1}^{-} \int_{x_{1}^{-}}^{\infty} dx_{2}^{-} V_{\underline{x}}[+\infty, x_{2}^{-}] t^{b} \psi_{\beta}(x_{2}^{-}, \underline{x}) U_{\underline{x}}^{ba}[x_{2}^{-}, x_{1}^{-}] \left[\frac{1}{2} \gamma^{+} \gamma^{5} \right]_{\alpha\beta} \bar{\psi}_{\alpha}(x_{1}^{-}, \underline{x}) t^{a} V_{\underline{x}}[x_{1}^{-}, -\infty]. \end{split}$$

- We have employed an adjoint $U_{\underline{x}}[b^-, a^-] = \mathcal{P} \exp$ light-cone Wilson line
- $U_{\underline{x}}[b^-, a^-] = \mathcal{P} \exp\left[ig \int_{a^-}^{b^-} dx^- \mathcal{A}^+(x^+ = 0, x^-, \underline{x})\right]$
 - Note the simple physical meaning of the first term:

$$-\vec{\mu}\cdot\vec{B} = -\mu_z \,B_z = \mu_z \,F^{12}$$

Polarized Dipole Amplitude

• The polarized dipole amplitude is then defined by

$$G_{10}(z) \equiv \frac{1}{4N_c} \int_{-\infty}^{\infty} dx^- \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^-] (-ig) \nabla \times \underline{\tilde{A}}(x^-, \underline{x}) V_{\underline{1}}[x^-, \infty] \right] + \operatorname{c.c.} \right\rangle (z)$$

with the standard light-cone
Wilson line
$$V_{\underline{x}}[b^-, a^-] = \operatorname{P} \exp \left\{ ig \int_{a^-}^{b^-} dx^- A^+(x^-, \underline{x}) \right\}$$

Polarized adjoint "Wilson line"

• Quarks mix with gluons. Therefore, we need to construct the adjoint polarized Wilson line --- the leading helicity-dependent part of the gluon scattering amplitude on the longitudinally polarized target.

• The calculation is similar to the quark scattering case. It yields (cf. Chirilli '18)

$$\begin{aligned} (U_{\underline{x}}^{pol})^{ab} &= \frac{2i\,g\,p_1^+}{s} \int\limits_{-\infty}^{+\infty} dx^- \, \left(U_{\underline{x}}[+\infty, x^-] \,\mathcal{F}^{12}(x^+ = 0, x^-, \underline{x}) \, U_{\underline{x}}[x^-, -\infty] \right)^{ab} \\ &- \frac{g^2\,p_1^+}{s} \int\limits_{-\infty}^{\infty} dx_1^- \int\limits_{x_1^-}^{\infty} dx_2^- \, U_{\underline{x}}^{aa'}[+\infty, x_2^-] \, \bar{\psi}(x_2^-, \underline{x}) \, t^{a'} \, V_{\underline{x}}[x_2^-, x_1^-] \, \frac{1}{2} \, \gamma^+ \gamma_5 \, t^{b'} \, \psi(x_1^-, \underline{x}) \, U_{\underline{x}}^{b'b}[x_1^-, -\infty] - \text{c.c.} \end{aligned}$$

Evolution for Polarized Quark Dipole

One can construct an evolution equation for the polarized dipole:

Evolution for Polarized Quark Dipole

Polarized Dipole Evolution in the Large-N_c Limit

In the large-N_c limit the equations close, leading to a system of 2 equations:

"Neighbor" dipole

- There is a new object in the evolution equation **the neighbor dipole**.
- This is specific for the DLA evolution. Gluon emission may happen in one dipole, but, due to transverse distance ordering, may `know' about another dipole:

• We denote the evolution in the neighbor dipole 02 by

Resummation Parameter

• For helicity evolution the resummation parameter is different from BFKL, BK or JIMWLK, which resum powers of leading logarithms (LLA)

$$\alpha_s \, \ln(1/x)$$

• Helicity evolution resummation parameter is double-logarithmic (DLA):

$$\alpha_s \ln^2 \frac{1}{x}$$

- The second logarithm of x arises due to transverse momentum (or transverse coordinate) integration being logarithmic both in the UV and IR.
- This was known before: Kirschner and Lipatov '83; Kirschner '84; Bartels, Ermolaev, Ryskin '95, '96; Griffiths and Ross '99; Itakura et al '03; Bartels and Lublinsky '03.

 These equations can be solved both numerically and analytically. (KPS '16-'17)

• The small-x asymptotics of quark helicity is (at large N_c)

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

Impact of our $\Delta\Sigma$ on the proton spin

• We have attached a $\Delta \tilde{\Sigma}(x, Q^2) = N x^{-\alpha_h}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

Impact of our $\Delta\Sigma$ on the proton spin

• Defining $\Delta \Sigma^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^{1} dx \, \Delta \Sigma(x, Q^2)$ we plot it for x₀=0.03, 0.01, 0.001:

- We observe a moderate to significant enhancement of quark spin.
- More detailed phenomenology is needed in the future.

Gluon Helicity at Small x

Yu.K., D. Pitonyak, M. Sievert, arXiv:1706.04236 [nucl-th]

Dipole Gluon Helicity TMD

- Now let us repeat the calculation for gluon helicity TMDs.
- We start with the definition of the gluon dipole helicity TMD:

 $g_1^G(x,k_T^2) = \frac{-2i\,S_L}{x\,P^+} \int \frac{d\xi^- \,d^2\xi}{(2\pi)^3} \,e^{ixP^+\,\xi^- - i\underline{k}\cdot\underline{\xi}} \,\left\langle P,S_L|\epsilon_T^{ij}\,\mathrm{tr}\left[F^{+i}(0)\,\mathcal{U}^{[+]\dagger}[0,\xi]\,F^{+j}(\xi)\,\mathcal{U}^{[-]}[\xi,0]\right]|P,S_L\right\rangle_{\xi^+=0}$ U^[+] Here U^[+] and U^[-] are future and past Wilson line staples (hence the name `dipole' TMD, F. Dominguez et al '11 – looks like a dipole scattering on a Ζ proton): U^[-]

proton

Dipole Gluon Helicity TMD

• At small x, the definition of dipole gluon helicity TMD can be massaged into

$$g_1^{G\,dip}(x,k_T^2) = \frac{8i\,N_c\,S_L}{g^2(2\pi)^3}\,\int d^2x_{10}\,e^{i\underline{k}\cdot\underline{x}_{10}}\,k_\perp^i\epsilon_T^{ij}\,\left[\int d^2b_{10}\,G_{10}^j(zs=\frac{Q^2}{x})\right]$$

 Here we obtain a new operator, which is a transverse vector (written here in A⁻=0 gauge):

$$G_{10}^{i}(z) \equiv \frac{1}{4N_{c}} \int_{-\infty}^{\infty} dx^{-} \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^{-}] \left(-ig\right) \tilde{A}^{i}(x^{-}, \underline{x}) V_{\underline{1}}[x^{-}, \infty] \right] + \operatorname{c.c.} \right\rangle (z)$$

• Note that $\ k_{\perp}^i \ \epsilon_T^{ij}$ can be thought of

as a transverse curl acting on $G^i_{10}(z)$ and not just on $\tilde{A}^i(x^-,\underline{x})\,$ -- different

from the polarized dipole amplitude!

Dipole TMD vs dipole amplitude

• Note that the operator for the <u>dipole</u> gluon helicity TMD

$$G_{10}^{i}(z) \equiv \frac{1}{4N_{c}} \int_{-\infty}^{\infty} dx^{-} \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^{-}] \left(-ig\right) \tilde{A}^{i}(x^{-}, \underline{x}) V_{\underline{1}}[x^{-}, \infty] \right] + \operatorname{c.c.} \right\rangle(z)$$

is different from the polarized <u>dipole</u> amplitude

$$G_{10}(z) \equiv \frac{1}{4N_c} \int_{-\infty}^{\infty} dx^- \left\langle \operatorname{tr} \left[V_{\underline{0}}[\infty, -\infty] V_{\underline{1}}[-\infty, x^-](-ig) \, \underline{\nabla} \times \underline{\tilde{A}}(x^-, \underline{x}) \, V_{\underline{1}}[x^-, \infty] \right] + \operatorname{c.c.} \right\rangle(z)$$

- We conclude that the dipole gluon helicity TMD does not depend on the polarized dipole amplitude! (Hence the 'dipole' name may not even be valid for such TMDs.)
- This is different from the unpolarized gluon TMD case.

Evolution Equation

 To construct evolution equation for the operator Gⁱ governing the gluon helicity TMD we resum similar (to the quark case) diagrams:

Large-N_c Evolution: Equations

• This results in the following evolution equations:

$$\begin{split} G_{10}^{i}(zs) &= G_{10}^{i\,(0)}(zs) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \,\ln\frac{1}{x_{21}\Lambda} \,\frac{\epsilon_{T}^{ij}\left(x_{21}\right)_{\perp}^{j}}{x_{21}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + G_{21}(z's)\right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \,\ln\frac{1}{x_{21}\Lambda} \,\frac{\epsilon_{T}^{ij}\left(x_{20}\right)_{\perp}^{j}}{x_{20}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + \Gamma_{21\,,\,20}^{gen}(z's)\right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi} \int_{\frac{1}{x_{10}^{2}}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{x_{21}^{2}} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[G_{12}^{i}(z's) - \Gamma_{10\,,\,21}^{i}(z's)\right] \end{split}$$

$$\begin{split} \Gamma_{10\,21}^{i}(z's) &= G_{10}^{i\,(0)}(z's) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z'} \frac{dz''}{z''} \int d^{2}x_{3} \ln \frac{1}{x_{31}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{31}\right)_{\perp}^{j}}{x_{31}^{2}} \left[\Gamma_{30\,,31}^{gen}(z''s) + G_{31}(z''s) \right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z'} \frac{dz''}{z''} \int d^{2}x_{3} \ln \frac{1}{x_{31}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{30}\right)_{\perp}^{j}}{x_{30}^{2}} \left[\Gamma_{30\,,31}^{gen}(z''s) + \Gamma_{31\,,30}^{gen}(z''s) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{1}{x_{10}s}}^{z'} \frac{dz''}{z''} \int_{\frac{1}{z''s}}^{\min \left[x_{10}^{2}, x_{21}^{2} \frac{z'}{z''} \right]} \frac{dx_{31}^{2}}{x_{31}^{2}} \left[G_{13}^{i}(z''s) - \Gamma_{10\,,31}^{i}(z''s) \right]. \end{split}$$

Large-N_c Evolution Equations: Solution

• These equations can be solved in the asymptotic high-energy region yielding the small-x gluon helicity intercept

$$\alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

• We obtain the small-x asymptotics of the gluon helicity distributions:

$$\Delta G(x,Q^2) \sim g_{1L}^{G\,dip}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\frac{13}{4\sqrt{3}}\sqrt{\frac{\alpha_s\,N_c}{2\pi}}}$$

Impact of our ΔG on the proton spin

• We have attached a $\Delta \tilde{G}(x,Q^2) = N x^{-\alpha_h^G}$ curve to the existing hPDF's fits at some ad hoc small value of x labeled x_0 :

"ballpark" phenomenology

Impact of our ΔG on the proton spin

• Defining $S_G^{[x_{min}]}(Q^2) \equiv \int_{x_{min}}^1 dx \, \Delta G(x,Q^2)$ we plot it for x₀=0.08, 0.05, 0.001:

- We observe a moderate enhancement of gluon spin.
- More detailed phenomenology is needed in the future.

EIC & Spin Puzzle

- Parton helicity distributions are sensitive to low-x physics.
- EIC would have an unprecedented low-x reach for a polarized DIS experiment, allowing to pinpoint the values of quark and gluon contributions to proton's spin:

Outlook

- To go beyond the large-N_c and large-N_c&N_f limits need to write a helicity analogue of JIMWLK evolution.
- This has been done recently (F. Cougoulic, YK, arXiv:1910.04268 [hep-ph]):

$$W_{\tau}[\alpha,\beta,\psi,\bar{\psi}] = W_{\tau}^{(0)}[\alpha,\beta,\psi,\bar{\psi}] + \int d^{3}\tau' \ \mathcal{K}_{h}[\tau,\tau'] \cdot W_{\tau'}[\alpha,\beta,\psi,\bar{\psi}]$$

with the kernel

$$\begin{split} \mathcal{K}_{h}[\tau,\tau'] &= \frac{\alpha_{s}}{\pi^{2}} \int d^{2}w_{\perp} \frac{\underline{X}' \cdot \underline{Y}'}{X'^{2} Y'^{2}} \ \theta^{(3)}(\tau-\tau') \theta\left(z'-\frac{\Lambda^{2}}{s}\right) \ \theta\left(X'^{2}-\frac{1}{z's}\right) \ \theta\left(Y'^{2}-\frac{1}{z's}\right) \\ &\times \left\{ U_{w}^{ba} D_{x,a,<}^{+} D_{y,b,>}^{+} - \frac{1}{2} \left(D_{x,a,<}^{+} D_{y,a,<}^{+} + D_{x,a,>}^{+} D_{y,a,>}^{+}\right) \\ &+ \frac{1}{2} U_{w}^{pol,ba} \left(D_{x,a,<}^{+} D_{y,b,>}^{\perp} + D_{x,a,<}^{\perp} D_{y,b,>}^{+}\right) \\ &+ \left(\frac{1}{2} \gamma^{5} \gamma^{-}\right)_{\beta \alpha} \frac{1}{2} \left((V_{w}^{pol})_{ij} D_{x,j,\alpha,<}^{\psi} D_{y,i,\beta,>}^{\psi} + (V_{w}^{pol}^{\dagger})_{ij} D_{x,j,\alpha,>}^{\psi} D_{y,i,\beta,<}^{\psi}\right) \right\} \end{split}$$

Quark and Gluon OAM at Small x

Quark OAM: Definition

• We begin by writing the (Jaffe-Manohar) quark OAM in terms of the Wigner distribution as

$$L_z = \int \frac{d^2 b_\perp db^- d^2 k_\perp dk^+}{(2\pi)^3} \, (\underline{b} \times \underline{k})_z \, W(k, b)$$

with the quark SIDIS Wigner distribution

$$\begin{split} W^{q,SIDIS}(k,b) &= 2\sum_{X} \int d^{2}r \, dr^{-} \, e^{ik \cdot r} \left\langle \bar{\psi}_{\alpha} \left(b - \frac{1}{2}r \right) \, V_{\underline{b} - \frac{1}{2}\underline{r}} \left[b^{-} - \frac{1}{2}r^{-}, \infty \right] \left| X \right\rangle \left(\frac{1}{2}\gamma^{+} \right)_{\alpha\beta} \right. \\ & \times \left. \left\langle X \right| \, V_{\underline{b} + \frac{1}{2}\underline{r}} \left[\infty, b^{-} + \frac{1}{2}r^{-} \right] \, \psi_{\beta} \left(b + \frac{1}{2}r \right) \right\rangle \end{split}$$

• Here, and above, the angle brackets denote "CGC averaging" in the (polarized) proton target:

$$\left\langle \hat{\mathcal{O}}(b,r) \right\rangle = \frac{1}{2P^+} \int \frac{d^2 \Delta \, d\Delta^+}{(2\pi)^3} \, e^{ib \cdot \Delta} \, \left\langle P + \frac{\Delta}{2} \right| \hat{\mathcal{O}}(0,r) \left| P - \frac{\Delta}{2} \right\rangle$$

Quark OAM: small-x simplifications

• The resulting quark OAM "PDF" is

$$L_q(x,Q^2) = \frac{2P^+}{(2\pi)^3} \sum_X \int d^2k_\perp \, d^2\zeta \, d\zeta^- \, d^2\xi \, d\xi^- \, e^{ik \cdot (\zeta-\xi)} \left(\frac{\underline{\zeta}+\underline{\xi}}{2} \times \underline{k}\right) \left\langle \bar{\psi}_\alpha(\xi) \, V_{\underline{\xi}}[\xi^-,\infty] \, |X\rangle \, \left(\frac{1}{2}\gamma^+\right)_{\alpha\beta} \times \langle X| \, V_{\zeta}[\infty,\zeta^-] \, \psi_\beta(\zeta) \right\rangle$$

• This can be compared to quark helicity,

$$g_{1L}^q(x,k_T^2) = \frac{2p^+}{(2\pi)^3} \int d^2\zeta \, d\zeta^- \, d^2\xi \, d\xi^- \, e^{ik \cdot (\zeta-\xi)} \left(\frac{1}{2}\gamma^+\gamma^5\right)_{\alpha\beta} \left\langle \bar{\psi}_\alpha(\xi) \, V_{\underline{\xi}}[\xi^-,\infty] \, V_{\underline{\zeta}}[\infty,\zeta^-] \, \psi_\beta(\zeta) \right\rangle$$

The operators are different, but the structure is similar. The quark OAM can be evaluated in the same way as the quark helicity operator: only diagram B survives.

Quark OAM: small-x expression

• After some algebra we arrive at the following small-x expression for quark OAM:

$$L_{q+\bar{q}}(x,Q^2) = \frac{8N_c}{(2\pi)^5} \int d^2k_{\perp} \, d^2x_{10} \, d^2x_1 \, e^{i\underline{k}\cdot\underline{x}_{10}} \, \frac{\underline{x}_{10}}{x_{10}^2} \times \frac{\underline{k}}{\underline{k}^2} \, \underline{x}_1 \times \underline{k} \int_{\Lambda^2/s}^1 \frac{dz}{z} \, G_{10}(zs) - \sum_f [\Delta q^f(x,Q^2) + \Delta \bar{q}^f(x,Q^2)]$$

- The result is written in terms of the polarized dipole amplitude G₁₀ (z). It seems we are done, right?
- This is almost correct. The remaining minor technicality is that the above quark OAM depends on the "first moment" of the polarized dipole amplitude

$$I^{k}(\underline{x}_{10}, zs) = \int d^{2}x_{1} \, x_{1}^{k} \, G_{10}(zs)$$

while all our earlier results for the quark helicity were derived for the "zeroth moment", the impact-parameter integrated polarized dipole amplitude

$$G(x_{10}^2, zs) = \int d^2 x_1 \, G_{10}(zs)$$

Quark OAM: small-x asymptotics

 It turns out that the "first moment" of the polarized amplitude is subleading. It grows with energy as a smaller power of energy

$$I^k(\underline{x}_{10}, zs) \sim \left(zsx_{10}^2\right)^{2\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

than the flavor-singlet quark helicity distribution

$$\Delta\Sigma(x,Q^2) = \sum_f [\Delta q^f(x,Q^2) + \Delta \bar{q}^f(x,Q^2)] \sim \left(\frac{1}{x}\right)^{\alpha_h^q} = \left(\frac{1}{x}\right)^{\frac{4}{\sqrt{3}}\sqrt{\frac{\alpha_s N_c}{2\pi}}} \approx \left(\frac{1}{x}\right)^{2.31\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

• Since 2.31 > 2, we get (cf. Y. Hatta & D.-J. Yang, 2018)

$$L_{q+\bar{q}}(x,Q^2) = -\Delta\Sigma(x,Q^2) \sim \left(\frac{1}{x}\right)^{\frac{4}{\sqrt{3}}\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

 Note that this is not a complete cancellation, the contribution to the proton spin is

$$\frac{1}{2}\Delta\Sigma(x,Q^2) + L_{q+\bar{q}}(x,Q^2) = -\frac{1}{2}\Delta\Sigma(x,Q^2)$$

Gluon OAM: definition

• The gluon OAM story is similar. We start with the Wigner distribution definition

$$L_z = \int \frac{d^2 b_\perp db^- d^2 k_\perp dk^+}{(2\pi)^3} \, (\underline{b} \times \underline{k})_z \, W(k, b)$$

with the dipole Wigner distribution for gluons

$$W^{G\,dip}(k,b) = \frac{4}{xP^{+}} \int d\xi^{-} d^{2}\xi_{\perp} \ e^{ixP^{+}\,\xi^{-}-i\underline{k}\cdot\underline{\xi}} \\ \times \left\langle \operatorname{tr} \left[F^{+i}(b-\frac{1}{2}\xi) \,\mathcal{U}^{[+]}[b-\frac{1}{2}\xi,b+\frac{1}{2}\xi] \,F^{+i}(b+\frac{1}{2}\xi) \,\mathcal{U}^{[-]}[b+\frac{1}{2}\xi,b-\frac{1}{2}\xi] \right] \right\rangle$$

• We obtain the following expression for the gluon OAM "PDF" (cf. Hatta et al, 2016)

$$L_{G}(x,Q^{2}) = \frac{4}{(2\pi)^{3} x} \int d^{2}b_{\perp}db^{-} d^{2}k_{\perp} d\xi^{-} d^{2}\xi_{\perp} \ (\underline{b} \times \underline{k}) \ e^{ixP^{+}\xi^{-} - i\underline{k} \cdot \underline{\xi}} \\ \times \left\langle \operatorname{tr} \left[F^{+i}(b - \frac{1}{2}\xi) \mathcal{U}^{[+]}[b - \frac{1}{2}\xi, b + \frac{1}{2}\xi] F^{+i}(b + \frac{1}{2}\xi) \mathcal{U}^{[-]}[b + \frac{1}{2}\xi, b - \frac{1}{2}\xi] \right] \right\rangle$$

Gluon OAM: small-x expression

- Gluon OAM at small x can (similarly to the quark OAM) be rewritten in terms of the "moment" of the polarized dipole amplitude G₁₀ⁱ for the gluon helicity TMD. This object is different from the polarized amplitude for the quark.
- We get

$$L_G(x,Q^2) = -\frac{8iN_c}{g^2 (2\pi)^3} \int d^2 x_{10} \, d^2 k_\perp \, e^{i\underline{k}\cdot\underline{x}_{10}} \, \left(\underline{k}\cdot\underline{x}_{10}\right) \, G_5\left(x_{10}^2, zs = \frac{Q^2}{x}\right)$$

where

$$\int d^2x_1 \ x_1^j \nabla_{10}^i G_{10}^i(zs) = x_{10}^j G_4(x_{10}^2, zs) + \epsilon^{jk} x_{10}^k G_5(x_{10}^2, zs)$$

• We write down and solve the equations for G₅.

Gluon OAM: small-x asymptotics

• We arrive at the following relation

$$L_G(x,Q^2) = \left(\frac{\alpha_h^q}{4} \ln \frac{Q^2}{\Lambda^2}\right) \Delta G(x,Q^2)$$

where

$$\alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}}$$

• We conclude that

$$L_G(x,Q^2) \sim \Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G} \sim \left(\frac{1}{x}\right)^{\frac{13}{4\sqrt{3}}\sqrt{\frac{\alpha_s N_c}{2\pi}}} \sim \left(\frac{1}{x}\right)^{\frac{1.88\sqrt{\frac{\alpha_s N_c}{2\pi}}}{2\pi}}$$

• Note that with the DLA accuracy we could also simply conclude that

 $|L_G| \ll |\Delta G|$

Valence Quark Transversity at Small x

Yu.K., M. Sievert, arXiv:1808.10354 [hep-ph]

Small-x Asymptotics of Quark Transversity

- Solution of the transversity evolution equation is straightforward.
- The resulting small-x asymptotics is (cf. Kirschner et al, 1996)

$$h_{1T}^{NS}(x,k_T^2) \sim h_{1T}^{\perp NS}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

- Note the suppression by x² compared to the unpolarized quark TMDs.
- For $\alpha_s = 0.3$ we get

$$h_{1T}^{NS}(x,k_T^2) \sim h_{1T}^{\perp NS}(x,k_T^2) \sim x^{0.243}$$

• This certainly satisfies the Soffer bound, but is not likely to produce much tensor charge from small x.

$$\delta q(Q^2) = \int_{0}^{1} dx \, h_1(x, Q^2)$$

Conclusions

• At large N_c we have obtained the following small-x asymptotics:

$$\Delta q(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^q} \quad \text{with} \quad \alpha_h^q = \frac{4}{\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 2.31 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$\Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\alpha_h^G} \quad \text{with} \quad \alpha_h^G = \frac{13}{4\sqrt{3}} \sqrt{\frac{\alpha_s N_c}{2\pi}} \approx 1.88 \sqrt{\frac{\alpha_s N_c}{2\pi}}$$
$$L_{q+\bar{q}}(x,Q^2) = -\Delta \Sigma(x,Q^2) \sim \left(\frac{1}{x}\right)^{\frac{4}{\sqrt{3}}\sqrt{\frac{\alpha_s N_c}{2\pi}}},$$
$$L_G(x,Q^2) \sim \Delta G(x,Q^2) \sim \left(\frac{1}{x}\right)^{\frac{13}{4\sqrt{3}}\sqrt{\frac{\alpha_s N_c}{2\pi}}}$$

- Future helicity and OAM work will involve solving the large-N_C&N_f equations
 + including running coupling corrections + LLA corrections +
 phenomenology to constrain the spin+OAM coming from small-x quarks and
 gluons.
- EIC should be able to measure helicity TMDs with high precision and down to fairly small x. We may also be able to learn something about OAM.

$$h_{1T}^{NS}(x,k_T^2) \sim h_{1T}^{\perp NS}(x,k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

Stan Brodsky's impact on my work

Happy Birthday, Stan!

- Light-front perturbation theory: I have had the appendix of the original Brodsky-Lepage paper with the LFPT rules since I started graduate research in 1995. I still have that copy and consult it regularly.
- Al Mueller's dipole model and my derivation of the BK equation were constructed using LFPT rules.
- First time I understood what nuclear shadowing was: walking with Stan from ECT* in Trento back to town for dinner (1998).
- Brodsky-Lepage-Mackenzie (BLM) scale fixing for the strong coupling: we employed it to construct rcBK and rcJIMWLK.
- Transverse single spin asymmetry: groundbreaking work by Stan with Hwang and Schmidt. Clarified single spin asymmetry to all of us, myself including.

Backup Slides

Proton Spin Puzzle $S_q(Q^2) = \frac{1}{2} \int_0^1 dx \,\Delta\Sigma(x,Q^2)$

• The spin puzzle began when the EMC collaboration measured the proton g₁ structure function ca 1988. Their data resulted in

 $\Delta\Sigma\approx 0.1\div 0.2$

- It appeared quarks do not carry all of the proton spin (which would have corresponded to $\Delta\Sigma=1$).
- Missing spin can be - Carried by gluons - In the orbital angular momenta of quarks and gluons - At small x (both helicity and OAM): $S_q(Q^2) = \frac{1}{2} \int_{0}^{1} dx \,\Delta\Sigma(x, Q^2) \qquad S_g(Q^2) = \int_{0}^{1} dx \,\Delta G(x, Q^2)$

Can't integrate down to zero, use x_{min} instead!

Or all of the above!

• Dominance of diagram B can also be obtained by applying crossing symmetry to the SIDIS process (KS '15):

 Compare the last line to the diagram B: reflecting the cc amplitude into the amplitude reduces the above diagram to the one on the right.

• At high energy/small-x the proton is a shock wave, and we have the following contributions to the SIDIS quark helicity TMD:

 $g_{1L}^q(x,k_T^2) = \frac{2p^+}{(2\pi)^3} \sum_X \int d^2\zeta \, d\zeta^- \, d^2\xi \, d\xi^- \, e^{ik \cdot (\zeta-\xi)} \left(\frac{1}{2}\gamma^+\gamma^5\right)_{\alpha\beta} \left\langle \bar{\psi}_\alpha(\xi) \, V_{\underline{\xi}}[\xi^-,\infty] \, |X\rangle \, \left\langle X \,|\, V_{\underline{\zeta}}[\infty,\zeta^-] \, \psi_\beta(\zeta) \right\rangle$

- Diagram D does not transfer spin information from the target. Diagram C is canceled as we move t-channel quarks across the cut.
- Diagram F is energy-suppressed, since the gluon should have no time to be emitted and absorbed inside the shock wave.
- Diagrams of the types A and E++ can be shown to cancel each other at the leading (DLA) order (Ward identity).
- We are left with the diagram B.

Helicity Evolution Ingredients

• Unlike the unpolarized evolution, in one step of helicity evolution we may emit a soft gluon or a soft quark (all in A⁺=0 LC gauge of the projectile):

• When emitting gluons, one gluon is eikonal, while another one is soft, but non-eikonal, as is needed to transfer polarization down the cascade/ladder.

Helicity Evolution: Ladders

 To get an idea of how the helicity evolution works let us try iterating the splitting kernels by considering ladder diagrams (circles denote non-eikonal gluon vertices):

• To get the leading-energy asymptotics we need to order the longitudinal momentum fractions of the quarks and gluons (just like in the unpolarized evolution case) $1 \gg z_1 \gg z_2 \gg z_3 \gg \dots$

obtaining a nested integral

$$\alpha_s^3 \int_{z_i}^1 \frac{dz_1}{z_1} \int_{z_i}^{z_1} \frac{dz_2}{z_2} \int_{z_i}^{z_2} \frac{dz_3}{z_3} z_3 \otimes \frac{1}{z_3 s} \sim \frac{1}{s} \alpha_s^3 \ln^3 s$$

Helicity Evolution: Ladders

- However, these are not all the logs of energy one can get here. Transverse momentum (or distance) integrals have UV and IR divergences, which lead to logs of energy as well.
- If we order transverse momenta / distances as (Sudakov- β ordering)

$$\frac{\underline{k}_1^2}{z_1} \ll \frac{\underline{k}_2^2}{z_2} \ll \frac{\underline{k}_3^2}{z_3} \ll \dots$$

we would get integrals like

also generating logs of energy.

$$z_1 \underline{x}_1^2 \gg z_2 \underline{x}_2^2 \gg z_3 \underline{x}_3^2 \gg \dots$$

$$\int_{1/(z_n s)}^{x_{n-1,\perp}^2 z_{n-1}/z_n} \frac{dx_{n,\perp}^2}{x_{n,\perp}^2}$$

Helicity Evolution: Ladders

• To summarize, the above ladder diagrams are parametrically of the order

$$\frac{1}{s} \alpha_s^3 \, \ln^6 s$$

- Note two features:
 - 1/s suppression due to non-eikonal exchange
 - two logs of energy per each power of the coupling!

Large-N_c Evolution

Г

• In the strict DLA limit (S=1) and at large N_c we get (here Γ is an auxiliary function we call the 'neighbor dipole amplitude') (KPS '15)

$$\begin{split} G(x_{10}^2,z) &= \ G^{(0)}(x_{10}^2,z) + \frac{\alpha_s \, N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^z \frac{dz'}{z'} \int\limits_{\frac{1}{z's}}^{x_{10}^2} \frac{dx_{21}^2}{x_{21}^2} \left[\Gamma(x_{10}^2,x_{21}^2,z') + 3 \, G(x_{21}^2,z') \right] \\ T(x_{10}^2,x_{21}^2,z') &= \Gamma^{(0)}(x_{10}^2,x_{21}^2,z') + \frac{\alpha_s \, N_c}{2\pi} \int\limits_{\frac{1}{x_{10}^2 s}}^{z'} \frac{dz''}{z''} \int\limits_{\frac{1}{z''s}}^{\min\left\{x_{10}^2,x_{21}^2,z'\right\}} \frac{dx_{32}^2}{x_{32}^2} \left[\Gamma(x_{10}^2,x_{32}^2,z'') + 3 \, G(x_{32}^2,z'') \right] \end{split}$$

• The initial conditions are given by the Born-level graphs

Non-Ladder Diagrams

• Ladder diagrams are not the whole story. The non-ladder diagrams below are also leading-order (that is, DLA).

• Non-ladder soft quark emissions cancel for flavor-singlet observables we are primarily interested in. Non-ladder soft gluons do not cancel.

Large-N_c Evolution: Equations

• Here

 $\Gamma_{20,21}^{gen}(z's) = \theta(x_{20} - x_{21}) \,\Gamma_{20,21}(z's) + \theta(x_{21} - x_{20}) \,G_{20}(z's)$

is an object which we know from the quark helicity evolution, as the latter gives us G and $\Gamma.$

Note that our evolution equations mix the gluon (Gⁱ) and quark (G) small-x helicity evolution operators:

$$\begin{split} G_{10}^{i}(zs) &= G_{10}^{i\,(0)}(zs) + \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{21}\right)_{\perp}^{j}}{x_{21}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + G_{21}(z's) \right] \\ &- \frac{\alpha_{s}N_{c}}{2\pi^{2}} \int_{\frac{\Lambda^{2}}{s}}^{z} \frac{dz'}{z'} \int d^{2}x_{2} \ln \frac{1}{x_{21}\Lambda} \frac{\epsilon_{T}^{ij}\left(x_{20}\right)_{\perp}^{j}}{x_{20}^{2}} \left[\Gamma_{20\,,\,21}^{gen}(z's) + \Gamma_{21\,,\,20}^{gen}(z's) \right] \\ &+ \frac{\alpha_{s}N_{c}}{2\pi} \int_{\frac{1}{x_{10}^{2}s}}^{z} \frac{dz'}{z'} \int_{\frac{1}{z's}}^{z} \frac{dx_{21}^{2}}{x_{21}^{2}} \left[G_{12}^{i}(z's) - \Gamma_{10\,,\,21}^{i}(z's) \right] \end{split}$$

Initial Conditions

Initial conditions for this evolution are given by the lowest order t-channel gluon exchanges:

• Note that these initial conditions have no ln s, unlike the initial conditions for the quark evolution:

$$\int d^2 b_{10} G_{10}^{(0)}(zs) = \int d^2 b_{10} \Gamma_{10,21}^{(0)}(zs) = -\frac{\alpha_s^2 C_F}{N_c} \pi \ln(zs x_{10}^2)$$

Small-x Evolution at large N_c

At large N_c the evolution is gluon-driven. We will evolve a gluon dipole, remembering that at large N_c the relation between the adjoint and fundamental longitudinally-polarized gluon dipoles is

$$G_{10}^{adj}(z) = 4 G_{10}(z)$$

(Note that the factor is 4, not 2 like in the unpolarized dipole case.)

Small-x Evolution at large N_c

 We need to sum the following diagrams (box denotes the polarized "Wilson lines"):

Small-x Evolution at large N_c&N_f

- At large N_c&N_f there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.
- Here's the adjoint dipole evolution:

Small-x Evolution at large N_c&N_f

- At large N_c&N_f there is no simple relation between the adjoint and fundamental polarized dipole amplitudes. We need to construct coupled evolution equations mixing them with each other.
- Here's the fundamental dipole evolution:

Small-x Evolution at large N_c&N_f

• The resulting equations are

Comparison with BER

To better understand BER work, we (KPS) tried calculating one (real) step of DLA helicity evolution for the qq->qq scattering (ca 2016).

It appears that we have identified the $k_2 >> k_1$ and $k_1 >> k_2$ regimes in which diagrams A, B, C, D, E, I are DLA, which were possibly not considered by BER for B, C, ... I. (Clarification to follow.)

Diagrams B and C: neither ladders nor bremsstrahlung gluons

• Consider now diagrams B and C in the opposite kinematics, k2 << k1.

There are 2 softest gluons k2. But it does not look like a ladder. If we
apply IREE prescription, we split the diagram in two, but the upper part
does not appear to look like a ladder.

Diagram C

- At this order it is OK. One can redefine how the ladder goes (now thick lines describe helicity flow, circles = non-eikonal helicity-dependent vertices).
- Also, C1 = C2.
- This is based on the observation by Boussarie, Hatta and Yuan '19.
- This is all one needs for NNLO anomalous dimension.
- `Regular' ladders look like this:

Higher orders?

- I do not see how this iterates to higher orders.
- How do we define the ladder in diagrams like this one? (if this is DLA)

Higher orders

• Iterating further, one arrives at diagrams like the ones in our shock wave approach:

• If q are the softest 2 gluons, how do these graphs arise from IREE? I know for sure these are DLA in our shock wave calculation.