Studies of Spin-Orbit Correlations

H. Avakian (JLab)

- Understanding azimuthal distributions of hadrons
- Introducing studies of SSA
- Kotzinian-Mulders Asymmetries
- Target fragmentation and Fracture Functions
- Correlations of target and current fragmentation
- Summary

NUCLEAR PHYSICS B

Nuclear Physics B 441 (1995) 234-256

New quark distributions and semi-inclusive electroproduction on polarized nucleons

Aram Kotzinian 1

Yerevan Physics Institute, Alikhanian Brothers St. 2, AM-375036 Yerevan, Armenia

Received 23 December 1994; revised 9 February 1995; accepted 23 February 1995

E-mail: aram@cernvm.cern.ch

¹ Now a visitor at CERN, PPE-Division, CH-1211, Geneva 23, Switzerland.

SIDIS described in the LGHF

laboratory gamma-lepton frame (later known as Trento convention)

Fig. 2. Lepton and produced hadron momenta in the LGHF.

$$C_{h_{1L}^{\perp}}^{(S)} = -2(1-y)\sin 2\phi_l^h \frac{P_T^{h2}}{m_D m_F} \sum_q e_q^2 \alpha_{h_{1L}^{\perp}}^{(S)} (1-\alpha_{h_{1L}^{\perp}}^{(S)}) A_{h_{1L}^{\perp}}^{(S)}.$$

As is clear from (54), one can separate the contributions of $C_{glL}^{(0)}$ and $C_{h_{1L}^{\perp}}^{(S)}$ by measuring the target longitudinal-spin asymmetry for different values of ϕ_l^h , P_T^h and y. If the experiment shows that $C_{h_{1L}^{\perp}}^{(S)} \neq 0$, then one can conclude that both the twist-two DF,

 h_{1L}^{\perp} , and FF, $F^{(S)}$, are nonzero. Thus, in principle, it is possible to investigate the Collins effect (a spin dependent FF) with a longitudinally polarized beam and target by

analyzing existing SMC semi-inclusive data in different bins of ϕ_I^h , as was done without

Single-Spin Asymmetries in electroproduction

HERMES note 96.059

 π^0 Electro-production in Deep Inelastic Scattering

H.R.Avakian, P.Di Nezza, V.Gyurjyan, K.Oganessyan

INFN - Laboratori Nazionali di Frascati

Frascati I-00044, Italy

HERMES effect

7TH INTERNATIONAL WORKSHOP ON DEEP INELASTIC SCATTERING AND QCD

First measurement of significant SSA in electroproduction

Collins fragmentation: Longitudinally polarized target

Kotzinian-Mulders Asymmetry (1996)

$$A_{UL}^{\sin2\phi}\sim h_{1L}^{\perp}H_{1}^{\perp}\sin2\phi$$
 (s_rk_T)(pS_L) \leftrightarrow h_{1L}^{\perp}

X

- •Study transversely polarized quarks in the longitudinally polarized proton
- •Provides independent information on the Collins function.

Collins fragmentation: Longitudinally polarized target

- •KM sin2

 moment, sensitive to spin-orbit correlations: the only leading twist azimuthal moment for longitudinally polarized target
- •More info will be available from SIDIS (COMPASS,EIC) and DY (RHIC,GSI)

Quark distributions at large k_T: models

$$u^+(x,k_T) = f_1^u(x,k_T^2) + g_1^u(x,k_T^2)$$

$$u^{-}(x, k_T) = f_1^u(x, k_T^2) - g_1^u(x, k_T^2)$$

Effect of the orbital motion on the **q**- may be most significant

Higher probability to find a quark anti-aligned with proton spin at large k_T

(dipole formfactor), J.Ellis, D-S.Hwang, A.Kotzinian

A₁ P_T-dependence in SIDIS

$$A_1(\pi) \propto rac{\sum_q e_q^2 g_1^q(x) D_1^{q o \pi}(z)}{\sum_q e_q^2 f_1^q(x) D_1^{q o \pi}(z)} \,\, e^{-z^2 P_T^2 rac{(\mu_0^2 - \mu_2^2)}{(\mu_D^2 + z^2 \mu_0^2)(\mu_D^2 + z^2 \mu_2^2)}}$$

M.Anselmino et al hep-ph/0608048

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$

$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

$$D_1^q(z, p_T) = D_1(z) \frac{1}{\pi \mu_D^2} \exp\left(-\frac{p_T^2}{\mu_D^2}\right)$$

 $\begin{array}{l} \mu_0^2 \!\! = \!\! 0.25 GeV^2 \\ \mu_D^2 \!\! = \!\! 0.2 GeV^2 \end{array}$

 π + A_{LL} can be explained in terms of broader k_T distributions for f₁ compared to g₁ π - A_{LL} may require non-Gaussian P_T-dependence for different helicities and flavors

Hadronization and factorization

$$F_{XY}^{h}(x, z, P_T, Q^2) \propto \sum H^q \times f^q(x, k_T, ...) \otimes D^{q \to h}(z, p_T, ...) + Y(Q^2, P_T) + \mathcal{O}(M/Q)$$

$$\int d^2 \vec{k}_T d^2 \vec{p}_T \delta^{(2)}(z \vec{k}_T + \vec{p}_T - \vec{P}_T)$$

→ conditional probability to produce hadron h

$$H_{h/N}^{q'}\left(x,\mathbf{k}_T,Q^2;x_F,\mathbf{P}_T^h;\mathbf{s}_q',\mathbf{S}_N\right)$$

Quark Fragmentation Functions (universal and independent)

$$D_{q,s'}^{h}(z,\mathbf{p}_{T},Q^{2})$$
 Where this works?

Hadron production in hard scattering

Correlations of the spin of the target or/and the momentum and the spin of quarks, combined with final state interactions define the azimuthal distributions of produced particles

Sivers effect in the target fragmentation

High statistics of CLAS12 will allow studies of kinematic dependences of the Sivers effect in target fragmentation region

Λ polarization in the target fragmentation

Wide kinematic coverage of CLAS12 allows studies of hadronization in the target fragmentation region

Λ production in the target fragmentation

Target fragmentation in SIDIS

16h 16

M. Anselmino, V. Barone and A. Kotzinian, Physics Letters B 713 (2012)

$$\mathcal{F}_{LU}^{\sin(\phi_1-\phi_2)} = \frac{\mid \vec{P}_{1\perp}\vec{P}_{2\perp}\mid}{m_N m_2} \mathcal{C}[w_5M_L^{\perp}h_D]$$

0	IVI	M_L	M_T^{\sim}, M_T^{\sim}
L	$\Delta M^{\perp,h}$	ΔM_L	$\Delta M_T^h, \Delta M_T^\perp$
T	$\Delta_T M_T^h, \Delta_T M_T^\perp$	$\Delta_T M_L^h$	$\Delta_T M_T, \Delta_T M_T^{hh}$
	(5) (#100 C20 #50	$\Delta_T M_L^{\widetilde{\perp}}$	$\Delta_T M_T^{\perp \perp}, \Delta_T M_T^{\perp \perp}$
The beam–spin asy	mmetry appea	ırs, at le	ading twist

11

Leading Twist

$A_{LU} = -$	 $y\left(1-\frac{y}{2}\right)$	$\mathcal{F}_{LU}^{\sin\Delta\phi}$	$-\sin\Delta\phi$
	 $\left(1-y+\frac{y^2}{2}\right)$	\mathcal{F}_{UU}	

Understanding of Target Fragmentation Region (TFR) is important for interpretation of the Current FR

and low transverse momenta, in the deep inelastic inclusive lepto-production of two hadrons, one in the target fragmentation region and one in the current

Need a consistent theoretical description for TFR

TT

Measure/model fracture functions

fragmentation region.

B2B hadron production in SIDIS: First measurements

SUMMARY

Correlations play a crucial role in non perturbative dynamics

Close communication of theorists and experimentalists was critical in extraction and interpretation of all kind of spin-azimuthal asymmetries

Target fragmentation can be an important (so far undervalued) domain for understanding of the partonic interactions and correlations

A proper visualization of the nucleon structure will require understanding of target fragmentation

Saclay, 18-Nov-16

Saclay, 18-Nov-16

Full picture can be surprising and beautiful

Support slides

Hadronization in current and target regions

$$\sigma_{LU} = -\frac{P_{T1}P_{T2}}{m_2 m_N} F_{k1}^{\Delta \hat{g}_1^{\perp h} \cdot D_1} \sin(\phi_1 - \phi_2).$$

H. Avakian, FIU, Nov 30

Anselmino/Barone/Kotzinian arXiv:1107.2292 (2011)

Collinear factorization

Fracture Function:

conditional probabilities to find a quark with certain polarization and longitudinal momentum fraction xB and transverse momentum k_™ inside a nucleon fragmenting into a hadron carrying a fraction z of the nucleon longitudinal momentum and a transverse momentum P_T

SSAs: Black Swans of Nucleon Structure

- 1. rarity: it is an outlier, as it lies outside the realm of regular expectations, because nothing in the past can convincingly point to its possibility.
- it carries an extreme impact.
- 3. retrospective (not prospective)
 predictability: in spite of its outlier status,
 human nature makes us concoct
 explanations for its occurrence after the
 fact, making it explainable and predictable.

One single observation can invalidate a general statement derived from millennia of confirmatory sightings of millions of white swans. All you need is one single (ugly) black bird.

Three stages for new phenomena

Any unexplained phenomenon passes through three stages before the reality of it is accepted.

- During the first stage it is considered laughable.
- During the second stage, it is **adamantly opposed.**
- Finally, during the third stage, it is accepted as **self-evident**.

Arthur Schopenhauer

LNF Nov 29 26