A Gauge Principle in Financial Markets

In honour of Stan Brodsky's 80th
Birthday
(CERN Feb 2020)

Covariant derivative in QCD

$$\partial_{\mu} o D_{\mu} = \partial_{\mu} + ig \, \mathscr{A}_{\mu}$$
 \downarrow $\mathscr{A}_{\mu} = A_{\mu} T^a$

Cov-derivatives is an important concept in differential geometry, not just in QED,QCD,...

• Example 1:

Component wise differentiation of a vector

$$\frac{\partial Y^{\mu}}{\partial X^{\nu}} =: Y^{\mu}_{,\nu}$$

cannot be full story since basis itself changes along the sphere. Better candidate for differentiation:

$$Y^{\mu}_{\;;
u}=:Y^{\mu}_{\;,
u}+Y^{\lambda}\;\Gamma^{\mu}_{\lambda\,\,
u}$$
 Christoffel-symbol Levy-Civitae connection

Cov -derivative:

$$D_{\nu} := \partial_{\nu} + \Gamma_{\cdot,\nu}$$

 Γ is a covariant derivative just like \mathscr{A}_{μ} !

Need for cov-derivatives arise whenever fibre-bundle structure applies and one wants to move from one point of a fibre to a neighbouring fibre point. Extra structure required to do that is provided by a connection

This is a trivial bundle. It admits a natural flat connection:

Recall: **Example 1**; this is a fibre bundle with

Example 2: QCD; M: Minkovski space $F = \mathbb{C}$

QCD wavefunctions are sections of a line bundle with base manifold=Minkovki space

Def: the map $\sigma: M \to E$ (total space)

is called a section if $\pi \circ \sigma = id_M$

Identify "similar" neighbouring pts via cov-deriv

$$m{D}\,\Psi=m{0}$$
 Ψ agrees with Ψ' modulo a gauge transformation $Dig(g(x)\Psiig)=g(x)D\,(\Psi)=0$

$$D(g(x)\Psi) = g(x)D(\Psi) = 0$$

Note: Not all fibre-bundles are of the form

$$E = M \times F$$

In general one observes $E = M \times F$ only locally for open subsets $U_i \subset M$ Let $\{U_i:U_i\subset M;\ i\in N\}$ be an open cover of $\mathsf{M}\quad \cup_i U_i=M$

Locally there is a diffeomorphism:

Local trivialization: $\Phi_i:U_i\times F\to \pi^{-1}(U_i)$

$$e\in E: \Phi_i^{-1}(e)=(p,f)~;~p\in M, f\in F~~\Phi_i=\Phi(p,f)=:\Phi_p(f)$$

The whole bundle is reconstructed by patching together the local pieces U_i subject to gluing conditions

The transition maps

$$t_{ij}(p) = \Phi_{i,p}^{-1} \circ \Phi_{j,p}$$

induce a group structure

 $t_{ii}(p)$: identity map

$$t_{ij}^{-1}=t_{ji}$$

$$t_{ik} = t_{ij}t_{jk}$$

Example: Holiday (in the old days)

Navigate via map: Atlas

Aliens could deduce that earth is a sphere by studying group structure of transition maps of the atlas

The group structure of transition maps encodes aspects of the geometry in an intrinsic way.

Non-trivial bundles carry their own "gauge theory" that is inherent In their geometry

However even for trivial bundles non-trivial connections are possible. Example: Standard Model

M:Minkovski-space is contractible to a point. Hence bundle is trivial, yet SU(3) as gauge symmetry

Think of DX=0 as level lines or heat map

Many connections ∇ are plausible as long as the adhere to a certain mathematical structure:

$$\nabla:\;\Gamma(E)
ightarrow\Gamma(E\;\oplus T^*(M))$$

where ∇ obeys the Leibniz rule:

Contracting with a tangent vector gives cov-deriv:

$$\nabla_X : \Gamma(E) \to \Gamma(E)$$

$$egin{aligned}
abla_X : \Gamma(E)
ightarrow \Gamma(E) \ \
abla_X(\sigma) = (
abla \sigma)(X) \end{aligned}$$

On trivial (vector) bundles, every connection can be written as

$$abla e^i = \omega^i_j \ e^j$$
 or $abla_X e^i = \omega^i_j(X) \ e^j$ where ω^i_j is a matrix of 1-forms

This is still true for non-trivial bundles but only locally. Going from one patch with basi $\{e\}_i \text{ with } \nabla e^i = \Theta_k^i e^k$ to a new patch with basis $\{\tilde{e}_i\} \text{ with } \nabla \tilde{e}^i = \tilde{\Theta}_k^i e^k$

It is easy to show $e=:g\: ilde{e}$ $g\in GL(n,\mathbb{R})$

$$ilde{\Theta} = g^{-1}\Theta \ \ g - g^{-1} \ dg$$

∇ transformsbetween patchesvia gaugetransformation

Question:

Who is right?

Answer: Both! But they are using a different (covariant) derivative!

employer

$$D^{Employer} = rac{d}{dt}$$

$$D^{Employee} = rac{d}{dt} - r_{inflation}$$

Let $X_{\mu}(t): \mu=1,\ldots,n$ prices of financial instruments (stocks,bonds,..)

Let $\Phi_{\mu}(t)$ holdings at time t of instrument μ . A portfolio V with allocations $\Phi_{\mu}(t)$ is worth

$$V=\sum_{\mu}\Phi_{\mu}X_{\mu}$$

This defines a fibre-bundle with base space $M=(t,X,\Phi)$

 $X=(X_1,\ldots,X_n), \Phi=(\Phi_1,\ldots,\Phi_n)$ with fibres consisting of all possible portfolios

In order to measure the quality of a portfolio manager (who controls $\Phi_{\mu}(t)$) do not allow injection or withdrawal of money

$$dV = \sum_{\mu} \Phi_{\mu} dX_{\mu} + \sum_{\mu} X_{\mu} d\Phi_{\mu} \ = 0$$

 $\sum_{\mu} X_{\mu} d\Phi_{\mu} = 0$

Self-financing condition

Define covariant derivative:

$$D_t = d - rac{\sum_{\mu} X_{\mu} dX_{\mu}}{\sum_{\mu} X_{\mu} \phi_{\mu}}$$

What are the constant level lines?

$$0=D_tV=\Phi_\mu dX_\mu+X_\mu d\Phi_\mu-\Phi_\mu dX_\mu=X_\mu d\Phi_\mu$$

Hence

 $D_tV = 0 \Leftrightarrow self financing investment$

This motivates the gauge potential:

$$A:=rac{\sum_{\mu}\Phi_{\mu}dX_{\mu}}{\sum_{\mu}\Phi_{m}uX_{\mu}}$$

What is the corresponding gauge group? Try local gauge transformation:

$$X_{\mu}
ightarrow X_{\mu}^{'}=\Lambda(x)X_{\mu}$$
 $A_{\mu}
ightarrow A^{'}=A+rac{d\Lambda(X)}{\Lambda(X)}$ $V=\Phi_{\mu}X_{\mu}$ $V
ightarrow V^{'}=\Lambda\Phi_{\mu}X_{\mu}$ $D
ightarrow D^{'}=D-rac{d\Lambda}{\Lambda}$

$$D'V' = \left(d - rac{\Phi_{\mu}dX_{\mu}}{\Phi_{
u}X_{
u}} - rac{d\Lambda}{\Lambda}
ight)\left(\Lambda\Phi_{\lambda}X_{\lambda}
ight) \ = \Lambda DV + \Phi_{\lambda}X_{\lambda}d\Lambda - \Phi_{\lambda}X_{\lambda}d\Lambda$$

 $= \Lambda DV$

D is indeed a cov-derivative. The symmetry group describes dilations

Curvature and arbitrage

There is no absolute scale in finance: Scaling all assets by an common factor does not change the economics. Any (non-zero) assets can be used equally as a reference.

Now that A is identified, apply machinery of differential geometry, calculate curvature (field strength)

$$R = dA + [A \wedge A]$$

It turns out

$$R=rac{1}{V^{\,2}}\sum_{\mu,
u}\Phi_{\mu}X_{
u}X_{\mu}igg(rac{dX_{\mu}}{X_{\mu}}-rac{dX_{
u}}{X_{
u}}igg)\wedge d\Phi_{
u}$$

wedge

Curvature and arbitrage

What is arbitrage?

Riskless way to make profits: enter 1 Euro into slot machine retrieve 2 Euros

It can be shown:

$$R = 0 \leftrightarrow \textit{no arbitrage opportunities}$$

Differential geometry is a natural picture for finance

Geometrically, curvature describes net effect of parallel transport of a vector around a closed loop. $R \neq 0$ would allow making systematic money by shifting assets around after ending up at the original allocation.