
Design, implementation and
performance results of the

GeantV prototype
Andrei Gheata for the GeantV R&D team

Draft v1

1. Introduction, context,
motivation
Why?

2

Context

• Hardware requirements: hitting walls
• power, ILP, memory access
• -> multi/many cores with SIMD pipelines

• LHC requirements++: Run3->HL
• Simulation still a bottleneck in many workflows
• demand for simulated samples ~luminosity

• Application requirements: simulation is hard
to optimize

• Very complex stepping per track
• Large code, sequential OO design from early

C++ adoption era (deep stacks, virtual calls)
• Small % silicon utilization

3

CMS estimated CPU needs for

HL-LHC (source: CWP)

Application morphology: stepping

4

1. Sample interaction length:

3. Sample MSC

2. Find next boundary + safety

4. Propagate in field to reach selected step
Cross boundary

6. Continuous processes (ioni)

5. Post-propagation MSC step correction

• The stages can make a pipeline, but each stage is large and complex (102-104+ LOC, deep stacks,
stochastic decision tree)

• Track state gets changed after every stage -> strong data binding between functional parts

8. Stepping actions

7. Sample discrete process + at rest

Charged particle in field

Motivations: locality & vectorization

PreStep

0.60%

ComputeIntLen

11.70%

GeomQuery

9.00%

PrePropagation

7.60%

FieldPropagation

9.70%

Linear

Propagation
10.30%

PostPropagation

11.80%
AlongStep

2.70%

PostStepAction

17.40%

AtRest

0.50%

SteppingActions

1.50%

Boilerplate

17.20%

FullCMS mt1_vectorRK_vectorphys.out

5

Get rid of those…

Shrink some cycles used here…
The numbers are not absolute, they depend a lot on the application,
they are however a guidance for what happens in a complex setup

GeantV

• Initial observations
• There is potential for locality in simulation
• Locality opens up parallelism

• Initial ideas
• Grouping tracks doing same work
• make the work vectorizable on tracks
• Gather tracks from more events to increase

populations

• Initial goals
• Factor 2-5 for full sim

• increased locality and vectorization, usage of
larger % of the hardware

• New opportunities for accelerators
• “Prototype with 2000 lines in few months”

(2013) 😏

50 per cent
of the time

spent in
50/7100
volumes

6

Extracted from early
talks of Rene…

…and Federico

Initial challenge : vectorizing the outer loop?

loop (m.feature[i])
{ FLOPS(Data, m.feature[i]) }

Algorithm(Data &, ModelState& m)

Data

Model feature parallelism
(e.g. surfaces of a polyhedron)

Data feature parallelism
(e.g. multiple tracks)

Data
Data

Data
Data loop (Data[i].feature)

{ FLOPS(Data[i].feature) }

Algorithm(vector<Data*> &)

Not so many algorithms
with natural inner loops

Needs track-parallel
environment

Modifying the workflow involves more copy overhead, since m.feature may be const data vector
while data[i].feature needs to be gathered -> vector FLOPS need to worth it

7

loop (m.feature[i])
{ FLOPS(Data, m.feature[i]) }

loop (m.feature[i])
{ FLOPS(Data, m.feature[i]) }

loop (m.feature[i])
{ FLOPS(Data, m.feature[i]) }

2. Concepts, design
considerations
Can it be done?

8

Data processing oriented design

• Bundle work of the same type -> make it look more like pipeline
• Need more tracks doing the same work -> “basket”

• Tracks will need to be regrouped -> state fully contained in track
• Reentrant methods with tracks/baskets as arguments -> API change

• Enable data locality
• Tracks in baskets need to be nearby in physical memory -> basket = SOA

• May need to reinforce basket populations
• Allow several events in flight -> event slots

• … concurrently
• Shared basket data structure with atomic synchronization -> extra complexity

9

Code redesign: vector interfaces

• Reusing code -> templated kernels for scalar/vector data types

• Geometry locality and basket-aware navigation -> VecGeom

• Enforcing short vectorization -> support different vectorization types

10

Transforming naturally
vectorizable scalar algorithms

Writing generic algorithms for scalar
or vector inputs (common “kernel”)

Prototyping revealed unforeseen problems

• Track populations executing different kernels are not uniform
• Putting one basket per logical volume requires lots of tracks to trigger basket

processing on a threshold

• Gathering many tracks implies also inefficient flushing
• Otherwise bundling too much work prevents events from finishing

• Concurrent track gathering in general track SOA creates bottlenecks
• Scaling problems, but also useless data copying

• Boosting both instructions and data locality in simulation has a price
• Copy the state…

11

About 2000 lines, one year later…

• A lot of good signs and hopes
• Geometry components showing

good vectorization

• Revealed how complex the
problem really was…

• …and how reality can be different
from blackboard drawings

• Dealing with extra complexity
and seeking solutions since then

• Moving gradually from a toy
example with geometry only to
the full complexity of an LHC
experiment simulation

12

Initial events
injection

Optimal regime
• Constant

basket content

Sparse regime
• More and more frequent
garbage collections (drink

the glass empty…)
•Less tracks per basket

Garbage collection
threshold

Depletion regime
•Continuous garbage

collection
•New events needed

•Force flushing some events

std::vector<Track*>
Vector basket

Propagation
Stage

LinearPropagator
(scalar)

FieldPropagator
(vectorized)

Select appropriate handler

Select(Track*)

scalar

SOA

Physics
Stage

13

Going complex: algorithm-oriented design

GeantTrack *

Stepping loop

Prioritized particle stack
Primaries

#0
Event
server

consume showers first

Secondaries
#1

other stages…

Geometry
Stage

Stage
Basket

Stage
Basket

Stage
Basket

Stage
Basket

Secondaries
#10

AOS

Algorithm1
(scalar)

Algorithm2
(vector)

FieldTrack_v &

Track*

AOS

gather scatter

…

- scalar/vector flow in stages
- 2 types of baskets (copy what you need)
- Stack-like approach
- Less work sharing

Concurrency design

• Minimize context switches: single kernel thread model (worker) vs.
TBB-base attempts

• Event slots: thought as a necessity…
• More data for same work

• Track versus event level parallelism: try to find the optimum
• Be able to share state data, but exchange the minimum

• Support for externally-driven parallelism
• What are HEP concurrent frameworks happy with?

• Towards functional programming style: percolating all state (task data
& tracks) through interfaces, making functions fully re-entrant

14

3. Implementation: the
components
How?

15

VecCore – SIMD Abstraction Library

• Simple API abstracting common SIMD operations in a
generic way

• Evolution of “backends” from VecGeom

• Became a standalone library in 2017:
https://github.com/root-project/veccore

• Used by VecGeom and ROOT

• Supports SIMD in x86_64 via Vc and UME::SIMD, SSE2 to
AVX512

• Supports ARM, PPC64 with scalar backend

• Supports Windows, Mac, and Linux

16

Get() Set()

Gather()

Scatter()

Blend()

mask

MaskedAssign()

VecGeom – vectorized geometry library

• Workhorse for implementing the main project ideas:
• Multi-architecture support, scalar/vector workflows
• Multi-level vectorization (optimization structures + shape

algorithms)

• Performance-driven development
• best algorithms inspired from GeantV/ROOT/USolids

• Production-level quality

• Unit-tests showing excellent performance figures

• Main problem: dispatching efficiently to lower level
algorithms

• Cannot group by boxes/tubes/…, but only by logical volumes
• Volume navigation has to talk to several daughters -> work

divergence

17

VecGeom code organization

18

gitlab.cern.ch/VecGeom/VecGeom

vectorized

vectorized

Cacheable
(Specialized
navigation)

vectorized
(scalar mode)

https://gitlab.cern.ch/VecGeom/VecGeom

VecMath: vectorization support for math
utilities
• Library needed for common vectorized algorithms, math, vector-

aware types (Vector3D, SOA3D, AOS3D, …)
• For now only: PRNG implementations, fast math functions (vectorized)

• Idea: extending the library to provide common vectorization support
• Migrate existing common stuff from VecGeom & GeantV, add extra general-

interest utilities

19

github.com/root-project/vecmath

https://github.com/root-project/vecmath

VectorFlow: generic vector adapter scalar
workflows
• A way to express outer loop

vectorization in a general way
in a scalar workflow

• Templated abstraction based
on the concepts of ‘work’ and
‘flow’ inspired by GeantV

• Extracted as independent
library

• Using VecCore as underlying
vectorization library

20

compute-intensive
kernel

https://github.com/agheata/vectorflow

https://github.com/agheata/vectorflow

Integration of motion in Field

• Integration takes about 18% CPU time in ‘scalar’
GeantV

• Lower level classes ‘simply’ vectorizable
• Implementation templated on Field/Equation types

• Top level ‘Driver’ fully rewritten
• checks good step and end of integration, reloads lanes

with new work.

• Separate basket size ‘b’ configured for field
propagation

• Lanes doing useful work increases with ‘b’
• Memory size increases – by 160MB for b=1024

No more tracks

Field Propagation - results

• Efficiency and memory use depend strongly
on basket size b

• Lanes doing useful work increases from 82%
(b=16) to 99.3% (b=1024)

• Memory size increases – by 160MB for b=1024
(16 event window) (why?)

• Further refinements possible
• ‘Reordering’ tracks - so long integration moves

to basket front (tested – 97.5% util. @ bsz=64)

• Using ‘single’ track code if only 1 track is left.

• Improved load / store.

Memory size vs ‘field’ basket size
for different event window sizes.

Move to results section?

GeantV EM physics models
particle processes models(s)

GeantV Geant4 defaults

e- ionisation Møller[100eV-100TeV] Møller[100eV-100TeV]

bremsstrahlung Seltzer-Berger [1keV-1GeV] Seltzer-Berger [1keV-1GeV]

Tsai (Bethe-Heitler) w. LPM. [1GeV-100TeV] Tsai (Bethe-Heitler) w. LPM. [1GeV-100TeV]

Coulomb sc. GS MSC model [100eV-100TeV] Urban MSC model [100eV-100TeV]

Mixed model [100MeV-100TeV]

e+ ionisation Bhabha [100eV-100TeV] Bhabha [100eV-100TeV]

bremsstrahlung Seltzer-Berger [1keV-1GeV] Seltzer-Berger [1keV-1GeV]

Tsai (Bethe-Heitler) w. LPM. [1GeV-100TeV] Tsai (Bethe-Heitler) w. LPM. [1GeV-100TeV]

Coulomb sc. GS MSC model [100eV-100TeV] Urban MSC model [100eV-100TeV]

Mixed model [100MeV-100TeV]

annihilation -Heitler (2𝛾) [0-100TeV] Heitler (2𝛾) [0-100TeV]

𝛾 photoelectric Sauter-Gavrila + EPICS2014 [1eV-100TeV] Sauter-Gavrila + EPICS2014 [1eV-100TeV]

incoherent sc. Klein-Nishina+ [100eV-100TeV] Klein-Nishina+ [100eV-100TeV]

e+e- pair production Bethe-Heitler+ [100eV-100TeV] Bethe-Heitler+ [100eV-100TeV]

Bethe-Heitler+ w. LPM [80GeV-100TeV] Bethe-Heitler+ w. LPM [80GeV-100TeV]

coherent sc - Livermore

+ energy loss fluct. - Urban

23GeantV physics list used also in Geant4 for comparisons

Vectorized EM physics models

• Revised models describing ~complete EM physics (except energy loss
fluctuations)

• More compact implementations, simplified interfaces
• Support for multiple physics list
• Several features went back also in Geant4, so the physics Geant4/GeantV can be

numerically compatible

• All the models are multi-particle vectorized
• Most important work was done to vectorize the common services: sampling

algorithms (alias, table), track rotation/boost
• Many challenges: unpredictable recursions, memory access, code complexity
• Final state EM speedup: between 1.5-3 on Haswell, 2-4 on Skylake with AVX2

• Most efficient implementation for a model depends on many factors
• Energy, material composition
• The full performance study is not complete

24

Main lessons from physics vectorization

• There is no generic solution to achieve
speedup

• The best approach is often a compromise
• E.g. choosing sampling method to be used

• Complex code can be also vectorized, but it
has to worth the hotspot

• There are “important” and ”less important”
models depending on the simulation, ranging from
< 1% to 4-5% of the total time

• Compactness and more efficient data access
brings eventually much more benefits than
vectorization for “small” hotspots

25

0

1

2

3

4

5

6

7

8

KleinNishina MollerBhabha SeltzerBerger RelBrem BetheHeitler RelPair Pos2Gamma SauterGavrila

Sp
e

ed
U

p

ScalTable/VecTable ScalRej/VecRej ScalRej/VecTable

M. Bandieramonte, M. Novak

MC truth: keeping track of kinematics

• we need to store the particle history necessary to understand the given event (process)
• there is no single solution that would cover all use cases
• functionality is provided as a user-hook allowing concrete user implementations

26

• interface (MCTruthMgr) implemented in the
prototype

• receives (concurrent) notifications from transport
threads about: adding/ending particles, events
finishing

• delegates processing of particles history to concrete
MC truth implementation

• Light coupling to transport
• minimal ‘disturbance’ to transport threads
• maximal flexibility of implementing custom particle

history handlers

• concrete example implementation provided
based on HepMC3

• See backup slides for more details

User interfaces: a compromise

• Same callbacks as in Geant4, but dealing with the extra complexity of
multiple events and multiple threads

• Data structures: templated approach (users provide their own types)
• Data indexed only by event slot, not thread id

• Approach changed from:
• “give me your hit model, I give you factories and tools to handle and store them

efficiently concurrently”
• Nice concurrent merging service ending up in ROOT (TBufferMerger)

• To:
• “Here are the hooks allowing to allocate your own data and providing per-thread

handles”
• “Here is the workflow allowing to score concurrently and merge hit information”

• Storing the hits or passing them to digitization is the user business

27

User data integration in GeantV callbacks

28

TaskData *td

TaskData *td

TD
M

an
ag

er

TaskData *td

Data registration -> get a
handler

UserApp::
Initialize()

UserApp::
SteppingActions(td)

Retrieve user data using handler,
score inclusive or per event info

UserApp::
SteppingActions(td)

UserApp::
SteppingActions(td)

UserData<T>

UserData<T>

UserApp::
AttachUserData(td)

UserData<T>

UserApp::
AttachUserData(td)

UserApp::
AttachUserData(td)

Create/attach user data to task data

UserApp::
FinishEvent(event)

Merge event user data providing
handler to a service (on demand)workers

master

UserApp::
FinishRun()

Merge run user data (on demand)

ScoringData vector<DataPerEvent>
[0..nslots]

data per run data per event

Requirements for user hit types:
Merge(int evslot, const ScoringData &other)
Clear(int event_slot)

geant-dev@cern.ch

Example data models making use of event slots coming
with the library

4. Integration with experiment
frameworks
Easy to use?

29

GeantV Integration in CMSSW

• Integration testing of GeantV w/ CMSSW has several goals:
• Demonstrate benefits of co-development between R&D team & experiments
• Exercise capabilities of CMSSW framework to interface with external

processing (ExternalWork mechanism) and handle track-level parallelization in
detector simulation

• Measure any potential CPU penalties or gains when running GeantV in
CMSSW

• Estimate cost of adapting to new interfaces and eventually migrating to new
(and potentially backward-incompatible) tools such as GeantV

• Thinking forward to HPC/GPU solutions

• Not planning to migrate CMS simulation to GeantV
• This is an R&D exercise

30

Overview of the integration exercise

• Exercise and debug features of GeantV and CMSSW
• Run GeantV using CMSSW ExternalWork feature:

• Asynchronous, non-blocking, task-based processing

• Resolved impedance mismatch between original GV scheduler and CMSSW

• Template wrappers for Sensitive detectors (SD) and scoring
• Ensure exact same SD code used for Geant4 & GeantV

• Minimize overhead (no branching or virtual table)

• Handle that each event processed in multiple threads, mixed in with other
events (i.e. merge at end of each event processing)

• Performance results and conclusions discussed in separate sections

31

Conclusions from CMSSW integration

• CMS studies met ~all goals laid out
• Co-development led to improvements and bug fixes in GeantV to facilitate

experiments’ use
• One of the first projects to exercise CMSSW ExternalWork feature
• Physics validation & CPU measurements show very positive results
• Path to adapt interfaces efficiently is laid out

• Demonstrator to test major elements of GeantV-CMSSW integration is
ready

• Up to 2.6× speedup in CMSSW application
• More efficient use of CPU caches in GV seems to translate in improved performance

within CMSSW
• The CMS simulation group thanks the GeantV R&D team for providing support to this

integration exercise and making it a successful co-development endeavor.

32

5. Performance results
Is it efficient?

33

Benchmarks

• Set of application examples to demonstrate functionality and/or
measure performance

• Simple setups: thin layer, semi-infinite block, simplified sampling calorimeter
• Complex setups with general non-experiment specific stepping actions: CMS,

LHCb, extendible to other experiments
• Full geometry and production cuts
• Shooting electrons to fire EM physics
• Allowing to tune internal GeantV parameters
• GeantV and Geant4 applications mapped 1 to 1 (geometry, physics lists, gun, cuts)

• Set of CPU platforms, but also GPU
• Different architectures, CPU, cache configurations
• Performance results given mostly for the CMS benchmark

34

Getting same results for same simulation (1)

• Per-mil agreement for all observables in most cases

35

Getting same results for same simulation (2)

• Some ~1% systematics visible in magnetic field
• Known issue due to difference in tracking/boundary crossing between GeantV and

Geant4

36

• Configuration details: GeantV vs. Geant4 10.04.p03
• FullCMS geometry (cms.gdml)
• No field/Map-based magnetic field
• GeantV-defined physics lists
• Input: 10 jobs x 1000 e+ each

• Jobs run on single-thread,

scalar mode

• Observables:
• number of secondaries
• number of steps
• track length

• % level mismatches in field,

understood

e-

e+
𝛾

Neutrals

Charged

CMS example comparisons

e-

e+
𝛾

Neutrals

Charged

CMS example: stepping observables

38

B = 0

B = 3.8 T

Physics validation in CMSSW
standalone test
• Geant4 10.4p2 w/ VecGeom v0.5 (scalar) vs

GeantV pre-beta-7 w/ VecGeom v1.1
• All CMS-specific G4 optimizations disabled

• Same production cuts (default 1mm)

• Single thread (reproducible pRNG sequences)

• Roughly the same distributions
with no magnetic field

• Small difference in the physics results
in the presence of constant B-field

39

Hit Time for 100 GeV e- (B=3.8)

Basketizing: efficiency,
vectorization, overhead per stage
• Several execution modes to measure stage performance

• Scalar mode (no baskets): Tscalar

• Vector mode (fill baskets and call vector algorithm): Tvector

• Basket “emulation” mode* (fill baskets and call scalar algorithm
in loop): TBE

• Scalar dispatch mode+ (execute full stepping loop with single
particle): TSD -> measure impact of improved GeantV caching

• Measure efficiency & overhead for basketization relative
to total run time

• Overhead: Bo = (TBE – Tscalar) / Tscalar

• Observed efficiency: Be = (Tscalar – Tvector) / Tscalar

• Vectorization efficiency: Bv = Be + Bo

40

SOAAOS

Stage
AOS

gather scatter

* BE mode hard to measure for some stages (e.g. physics) missing emulation of scalar scatter of internal SOA basket
+ emulating Geant4 stepping but with GeantV data model

scalar scalar

scalar vect

scalar Scalar_b

Results: basketizing efficiency

CMS application benchmark

• 100 GeV isotropic e-

• 100 primaries

• Field type: CMS map

• 1 thread, performance mode

Fractions of total scalar execution time

Xeon®CPU E5-2630 v3@2.4 GHz
Stage % total Be Bo Bv

Field 14.4% 5.0% 2.0% 7.0%

Phys+ 9.4% 0.3% 1.4% 1.7%

Geom* 12.3% -3.3% 3.7% 0.4%

MSCx 8.6% 1.8% 0.2% 2.0%

FPMo 32.4% 5.8% 1.5% 7.3%

41

+ Only post step sampling of physics models
* Only querying distance to boundary and safety
x Only MSC position/direction correction calculation
o Best configuration for vectorization (Field /Physics/MSC)

Measurement errors < 0.5%

mailto:v3@2.4

Basketizing overheads dependence on
architecture

CPU OS gcc SIMD Cache
L1

Cache
L2

Cache

L3
Bo

(field)

Bo

(physics)

Bo

(geometry)

Bo

(FPM)

Intel i7

2.5GHz

Ubuntu 16.04 5.4.0 AVX2 126KB 1MB 8 MB 2% ± 1% 2% ± 1% 6% ± 1% 3% ± 1%

Intel Core i7-

4510U 2GHz

Ubuntu 16.04 5.4.0 AVX 128KB 512KB 4 MB -1% ± 7% -3% ± 7% 12% ± 9% 2% ± 8%

AMD A10-

7700k

Fedora

Workstation 29

8.2.1 AVX 2x96 KB I

4x16 KB D
2x2M - 15% ± 1% 4% ± 1% 15% ± 1% 13% ± 1%

Intel R

1.8GHz

Fedora

Workstation 29

8.3.1 SSE4 64KB 512KB 2 MB 9% ± 1% 5% ± 1% 9% ± 1% 9% ± 1%

Geant4 (10.4.p03) vs. GeantV (beta)
10 GeV electron x 1000 events (1-thread, 10 measurements)

Overhead seems to largely increase for smaller L1 cache size

“Basketizing”: benefits vs. costs

• Costs (coming from initial scalar approach):
• Workflow redesign, interface redesign, data structure re-engineering
• Copy overheads: data regrouping, gather/scatter
• Filling baskets concurrently -> additional overheads due to contention
• Algorithm vectorization effort

• Benefits:
• Improved instruction locality
• Data locality can improve if re-basketizing is done only with collocated tracks
• SIMD instructions: making use of important % of the silicon for more algorithms
• Code more compact/efficient and accelerator-ready

• Efficient basketization needs reasonable FLOPS workload
• Algorithm vectorization can be inefficient for the same reasons as loop vectorization…

• Branching, early returns, complexity

SOAAOS Algorithm
(vector)

AOS

gather scatter

43

Performance summary table: Geant4 vs. GeantV

CPU OS gcc SIMD Cache
L1

Cache
L2

Cache

L3

GV [sec] G4/GV strk/GV0 Vector

Gain

Intel i7

2.5GHz

Ubuntu 16.04 5.4.0 AVX2 126KB 1MB 8 MB 941 ± 6 1.41 ± 0.04 1.00 ± 0.0 1.09 ±

0.01

Intel Core i7-

4510U 2GHz

Ubuntu 16.04 5.4.0 AVX 128KB 512KB 4 MB 1,303 ± 6 1.09 ± 0.01 0.95 ± 0.07 1.09 ± 0.08

AMD A10-

7700k

Fedora

Workstation 29

8.2.1 AVX 2x96 KB I

4x16 KB D
2x2M - 1,828 ± 6 1.80 ± 0.04 1.00 ± 0.01 1.01 ± 0.01

Intel R

1.8GHz

Fedora

Workstation 29

8.3.1 SSE4 64KB 512KB 2 MB 2,769 ± 6 1.03 ± 0.01 1.00 ± 0.01 0.84 ± 0.01

Intel Centrino2 Fedora

Workstation 29

8.2.1 AVX - 2x2 MB - 2,592 ± 6 1.92 ± 0.01 1.00 ± 0.01 1.01 ± 0.01

11AMD

e-300

Ubuntu 18.10 8.2.0 SSE2 64KB 1 MB - Not Vc
compatible

Not Vc
compatible

1.00 ± 0.01 Not Vc

compatible

Summary of speed-ups for different architectures

Geant4 (10.4.p03) vs. GeantV (beta)
10 GeV electron x 1000 events (1-thread, 10 measurements)

CPU performance of G4/GV varies significantly over different platforms

strk (single track mode): emulation
of Geant4 style tracking
,

Is this correctly
measured?

?

Some open questions

• Single track mode emulating Geant4-like stepping shows very little
apparent locality loss (< 10%). Possible reasons:

• More compact code -> harder to miss the instruction cache

• Data cache misses are dominant in GeantV, minimizing the effect

• Wildly varying performance ratio GV/G4 depending on architecture,
cache configuration

• Coming from Geant4 being frontend-bound?

• Cache size/architecture, but also memory latency/throughput?

45

CPU Benchmark on the Fermilab Wilson Cluster

• Benchmark
• GeantV (pre-beta-7) vs. Geant4 (10.5)
• The standalone Geant4/GeantV application using a CMS gdml with a CMS field map
• 10 × 10 GeV e−/event, 1000 events
• measurements on quiet batch nodes (error < 1%)

• CPU Time in [sec] and performance comparisons between Geant4 and Geant4
• CPU performance widely varies on different processors
• marginal gain by SIMD vectorization (maximum ∼ 10%)

• Processor: SIMD-CPU[GHz]-Cache[MB]

• What is the source of gain (~1.4-2.1) in Geant4/GeantV?

Vector Instruction and Gain (AVX)
• % of vectorization = (PAPI_DP_VEC)/(PAPI_DP_OPS)

• PAPI DP VEC = Double precision vector/SIMD instructions

• PAPI DP OPS = Floating point (double precision) operations

• PAPI (performance API) hardware counters in [1 Billion]

• % of vectorization is high, but gain is small
• Vectorization comes with the price of too many data moves and conditional branches

Performance Comparison: Geant4 vs. GeantV libraries

• Exclusive time (%) of big libraries

• There are no much variations in the percent of time over different
processors (CPUs/Cache Size)

• The performance difference between Geant4 and GeantV is a global effect
(i.e., not driven by a single module or a set of functions)

Performance Comparison: L1 Cache and TLB Misses
• L1 cache miss: in [Billion] counters

• ICM (DCM) = Instruction (data) cache miss

• GeantV shows much significantly less ICM

• TLB (translation lookaside buffer) miss: in [1M] counters
• cache for page tables which map addresses between virtual and physical memory

• GeantV show much less TLB misses

Performance Comparison: IPC and FMO
• IPC = Instruction(INS)/Cycle(CYC) : Good Balance with Minimal Stall

• ICM (DCM) = Instruction (data) cache miss in [1B] counters

• GeantV shows significantly less ICM

• FMO = FL/(LD+SR) : CPU Utilization
• FL (Floating point instruction), LD (load), SR (store) in [1B] counters

• GeantV shows the better FMO in all tested platforms

Application profiles from VTune
microarchitecture analysis – CMS benchmark

51

Geant4 GeantV

Frontend & memory bound Core & memory bound

Performance tests for CMSSW integrated
example
• Settings:

• GeantV pre-beta-7+ (63468c9b)
• Enabled: vectorized multiple scattering, field (not physics)

• Disable output

• Machine: FermiCloud VM w/ Other machines here?
• Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 4096 KB cache, sse4.2

instructions

• Standalone GV/G4 test: 2.14× speedup

• CMSSW GV/G4 test: 2.6× speedup with single thread
• But G4 has better scaling w/ # threads than GV

52

Concurrency: Strong scaling

• Acceptable, but far from
perfect (~80% efficiency
for 16 threads)

• Price to pay for
concurrent services, track
stealing

• Hard to improve w/o fully
binding events to threads

• Do we need to exchange
tracks between threads?

• If yes, rather exchange
sub-event/track partition
than random tracks…

53

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24 28 32

Sp
ee

d
u

p

#threads

Xeon(R) CPU E5-2630 v3 @ 2.40GHzScalar

Basketized

ideal

Ncores

numa

HYPERTHREADING

Not just Amdahl, but also basket
efficiency loss with #threads

Memory efficiency

• Larger memory footprint than
Geant4 (~3x)

• Expected to improve for large
#nthreads (no study yet)

• Depending on number of
buffered events

• Memory efficiency
• Scaling with number of tracks in

flight

• Price to pay: baskets not having
memory locality -> data cache
misses increasing with #nthreads

54

600

800

1000

1200

1400

1600

1800

0 50 100 150 200 250 300

R
SS

 [
M

B
yt

es
]

#nthreads

CMS benchmark, 10 GeV electrons

run initialization

Track block (contiguous) Dead track (hole)

New track

Basket (pointers to tracks)

13.9

12.8

12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14

SYS

NUMA

2
	p

ro
p

a
g

a
to

rs
2

	p
ro

pa
g

a
to

rs

CMSAPP,	8	THREADS	ON	XEON® 	CPU	E5-2630	2X8	CORES

time[s]

CPU	#0	+	CPU	#1

P #0 P	#1

P #0 P	#1

CPU	#0 CPU	#1

Topology awareness

55

• Thread binding to cores by policy
• Compact/scatter over NUMA domains
• Multiple propagators/schedulers

• Track block allocator NUMA aware
• Blocks owned by threads

• Measurable NUMA effect
• pointing to data cache misses

~9% gain

node

GeantV
run manager

Scheduler

Basketizer

Scheduler

Basketizer

Propagator Propagator
(…)

NUMA discovery service
(libhwloc)

socket socket socket

CPU CPU

memory

Accelerators: integration with the “basket”
model
• Portability: CUDA as a backend

• GPU baskets and performance
• CPU Intel Xeon E5 (1 core @2.6GHz)
• NVidia K20 GPU (2096 cores @0.7GHz)
• EM models (sampling final states)
• Performance as the number of tracks
• Potential of x30 on GPU, but requires

104 tracks per process

• Lessons:
• Portability is feasible, but does not come for free
• efficiency comes with very large baskets, which are

difficult to maintain

56

Concurrency lessons

• The more thread-local the data flow the better
• Keep tracks in the same thread, with minimum stealing

• Avoid high contention on common data containers
• Concurrent basketizing has high price, some baskets had to become thread local

• A MT multi-basketized flow becomes inefficient on event tails
• Partial baskets have to be flushed in scalar mode to sustain the data flow

• Track-level parallelism cuts event tails, but has large price
• Multiple events in flight, but owned by a thread - is it a good compromise?

• Track-level parallelism is the path to instruction-level parallelism

57

6. Lessons learnt
How could it be done better?

58

Open questions

• Still not fully understanding all sources of performance increase of
GeantV

• Would need extra time/resources/expertise

• Sharing tracks opens up fine grain parallelism, but extra
communication hinders on performance: what is the best trade-off?

• How to improve both instruction and data locality, is it even possible?
• Needs rethinking the data model and access patterns

59

Main lessons (1)

• Main factors in the speedup seem to include
• Better cache use

• Tighter code (e.g., less indirections and branching)

• Vectorization’s impact (much) smaller than hoped for
• Basketization can bring benefits for FP hotspots (e.g. magnetic field, multiple

scattering

• Small fraction of the code has been vectorized or is run in vector mode effectively

• Overhead of per volume basketization cost similar to vector gain for “small” modules

• Basketization cost in
• Either extra memory copy (using collection of tracks)

• Or lower memory access coherency (using collection of pointers)

60

Main lessons (2)

• Geometry navigation not (yet?) vectorized and introduces a bottleneck
(Amdahl)

• Mainly due to the end-of-event track collection/gathering from the ‘rarely’ used
volumes

• Should decrease for larger track multiplicities
• But no guarantee that these volumes internally vectorize

• Code/Algorithm needs to be designed from the ground up for vectorization
for best results

• Compact code, compact data fitting caches and being reused

• Actual upper limit on potential vectorization gains are still to be fully
understood

• including whether different approaches and trade-offs in the physics code
implementation could bring extra computing performance

• Including AVX512 that was not tested due to not working backends

61

Conclusions (1)

• Innovative and disruptive R&D allowing to investigate novel technologies
and approaches to simulation

• Allowed to improve performance-critical code in the simulation chain

• Still more room for improvement

• Showed the significant impact of good CPU cache behavior (and the
challenge of measuring this effect)

• Further research warranted to see if this can be exploited even further

• Basketization gains overshadowed by associated costs mainly due to data
copy/management overheads.

• Nonetheless might still benefit other workflows (e.g. pipelines)

• Balance might be different under different conditions (e.g. larger multiplicities)

62

Conclusions (2)

• Amdahl's law applies to vectorization too :(

• Lessons learned will be useful for GPU architecture investigations

• GeantV allowed to venture into interesting and ambitious R&D paths
and set new expectations for the future, both in terms of potential
gains and the cost of achieving them

63

Follow-up

• Reusable components and ideas for improving existing Geant4
• Extending VecCore, VecMath, VecGeom
• Investigate basketization of few performance-critical components in Geant4

• Follow-up plans
• Compact specialized libraries as alternative to general stepping approach
• Extraction of basketization generic library, possible basketization of FP-intensive components
• Disentangling state from managers and move towards more functional programing style

• Increase flexibility of functional-based regrouping, enable parallelism opportunities below event level.

• Review the data model and flow in Geant4 to pre-empt extra parallelism and acceleration
opportunities

• …

• Pere will take care of most of this in his presentation

64

Thank you!
Thanks to all the GeantV collaborators contributing to different parts of

this R&D

Backup slides
More detailed info about the different topics

66

VecCore SIMD Abstraction Library

67

Get() Set()

Gather()

Scatter()

Blend()

mask

MaskedAssign()

▶ Simple API abstracting common SIMD

operations in a generic way

▶ Evolution of “backends” from VecGeom

▶ Became a standalone library in 2017:

https://github.com/root-project/veccore

▶ Used by VecGeom and ROOT

▶ Supports SIMD in x86_64 via Vc and

UME::SIMD, SSE2 to AVX512

▶ Supports ARM, PPC64 with scalar backend

▶ Supports Windows, Mac, and Linux

Why use SIMD Vectorization?

SIMD vectorization is already essential for high performance on modern Intel®

processors, and its relative importance is expected
to increase, especially on hardware geared towards HPC, such as Xeon Phi™ and

Skylake Xeon™ processors.

68

Vectorization of ROOT Mathematical Libraries — CHEP 2018, Sofia, Bulgaria

Reference: https://indico.cern.ch/event/587955/contributions/2938041/attachments/1683418/2706263/Vectorization_chep2018.pdf

https://indico.cern.ch/event/587955/contributions/2938041/attachments/1683418/2706263/Vectorization_chep2018.pdf

SIMD Programming Models

▶ Auto-vectorization

▶ OpenMP 4.1

▶ Compiler Pragmas

▶ SIMD Library

▶ Compiler Intrinsics

▶ Assembly

float a[N], b[N], c[N];

for (int i = 0; i < N; i++)
a[i] = b[i] * c[i];

float a[N], b[N], c[N];

#pragma omp simd
#pragma ivdep
for (int i = 0; i < N; i++)
a[i] = b[i] * c[i];

#include <x86intrin.h>
__m256 a, b, c;

a = _mm256_mul_ps(b, c);

#include <Vc/Vc>
Vc::SimdArray<float, N> a, b, c;

a = b * c;

asm volatile(“vmulps %ymm1, %ymm0”);

69

▶ Unreliable performance with auto-vectorization

● https://godbolt.org/g/bjQzbA (change int to bool)

● https://godbolt.org/g/R6fXAw (change -O1 to -O3)

▶ Compiler intrinsics are not an ideal interface

● Limited to C name mangling, so portability is an issue

▶ Libraries do not work well across all architectures

● UME::SIMD is best on KNL, but Vc is better for Skylake

● ARM support only in UME::SIMD, but poor performance

▶ Portable solution for when no library is available

● For example, on PowerPC

Why did we need VecCore?

70

https://godbolt.org/g/bjQzbA
https://godbolt.org/g/R6fXAw

VecCore API
namespace vecCore {

template <typename T> struct TypeTraits;

template <typename T> using Mask = typename TypeTraits<T>::MaskType;

template <typename T> using Index = typename TypeTraits<T>::IndexType;

template <typename T> using Scalar = typename TypeTraits<T>::ScalarType;

// Vector Size

template <typename T> constexpr size_t VectorSize();

// Get/Set

template <typename T> Scalar<T> Get(const T &v, size_t i);

template <typename T> void Set(T &v, size_t i, Scalar<T> const val);

// Load/Store

template <typename T> void Load(T &v, Scalar<T> const *ptr);

template <typename T> void Store(T const &v, Scalar<T> *ptr);

// Gather/Scatter

template <typename T, typename S = Scalar<T>>

T Gather(S const *ptr, Index<T> const &idx);

template <typename T, typename S = Scalar<T>>

void Scatter(T const &v, S *ptr, Index<T> const &idx);

// Masking/Blending

template <typename M> bool MaskFull(M const &mask);

template <typename M> bool MaskEmpty(M const &mask);

template <typename T>

void MaskedAssign(T &dst, const Mask<T> &mask, const T &src);

template <typename T>

T Blend(const Mask<T> &mask, const T &src1, const T &src2);

} // namespace vecCore

Get() Set()

Gather()

Scatter()

Blend()

mask

MaskedAssign()

71

Iterate

f(z) = z² + c

N times and check if
z diverges

Example included in
VecCore

VecCore Example:
Mandelbrot Set

Example SIMD implementations using
intrinsics:
https://github.com/skeeto/mandel-
simd
Shows speedup of 5.8x with AVX

72

https://github.com/skeeto/mandel-simd

Iterate

f(z) = z² + c

N times and check if
z diverges

Example included in
VecCore

VecCore Example:
Mandelbrot Set template<typename T>

void mandelbrot(T xmin, T xmax, size_t nx,
T ymin, T ymax, size_t ny,
size_t max_iter,
unsigned char *image)

{
T dx = (xmax - xmin) / T(nx);
T dy = (ymax - ymin) / T(ny);

for (size_t i = 0; i < nx; ++i) {
for (size_t j = 0; j < ny; ++j) {

size_t k = 0;
T x = xmin + T(i) * dx, cr = x, zr = x;
T y = ymin + T(j) * dy, ci = y, zi = y;

do {
x = zr*zr - zi*zi + cr;
y = 2.0 * zr*zi + ci;
zr = x;
zi = y;

} while (++k < max_iter &&
(zr*zr+zi*zi < 4.0));

image[ny*i+j] = k;
}

}
}

Scalar Implementation

73

Iterate

f(z) = z² + c

N times and check if
z diverges

Example included in
VecCore

VecCore Example:
Mandelbrot Set

template<typename T>
void mandelbrot_v(Scalar<T> xmin, Scalar<T> xmax, size_t nx,

Scalar<T> ymin, Scalar<T> ymax, size_t ny,
Scalar<Index<T>> max_iter,
unsigned char *image)

{
T iota;
for (size_t i = 0; i < VectorSize<T>(); ++i)

Set<T>(iota, i, i);

T dx = T(xmax - xmin) / T(nx);
T dy = T(ymax - ymin) / T(ny), dyv = iota * dy;

for (size_t i = 0; i < nx; ++i) {
for (size_t j = 0; j < ny; j += VectorSize<T>()) {

Scalar<Index<T>> k{0};
T x = xmin + T(i) * dx, cr = x, zr = x;
T y = ymin + T(j) * dy + dyv, ci = y, zi = y;

Index<T> kv{0};
Mask<T> m{true};

do {
x = zr*zr - zi*zi + cr;
y = T(2.0) * zr*zi + ci;
MaskedAssign<T>(zr, m, x);
MaskedAssign<T>(zi, m, y);
MaskedAssign<Index<T>>(kv, m, ++k);
m = zr*zr + zi*zi < T(4.0);

} while (k < max_iter && !MaskEmpty(m));

for (size_t k = 0; k < VectorSize<T>(); ++k)
image[ny*i+j+k] = (unsigned char) Get(kv, k);

}
}

}

VecCore Implementation

74

Performance of Mandelbrot Set

Note: “Scalar” above has SSE2 enabled, single precision time with SSE2

disabled with GCC-7.2 is 764ms.

Reference: https://indico.cern.ch/event/567550/papers/2700128/files/6152-

veccore-v2.pdf
75

https://indico.cern.ch/event/567550/papers/2700128/files/6152-veccore-v2.pdf

76

Effect of branching on SIMD
performance

Iterate f(z) = z2 + c, where

c = 0.7885 eiα and α ∈ [0, 2π]

Julia Set

Code Sample: VecGeom Box

77

template <typename Real_v>

void DistanceToIn(UnplacedStruct_t const &box, Vector3D<Real_v> const &point,

Vector3D<Real_v> const &direction, Real_v const &stepMax, Real_v &dist)

{

const Vector3D<Real_v> invDir(Real_v(1.0) / NonZero(direction[0]),

Real_v(1.0) / NonZero(direction[1]),

Real_v(1.0) / NonZero(direction[2]));

const Real_v distIn = Max((-Sign(invDir[0]) * box.fDimensions[0] - point[0]) * invDir[0],

(-Sign(invDir[1]) * box.fDimensions[1] - point[1]) * invDir[1],

(-Sign(invDir[2]) * box.fDimensions[2] - point[2]) * invDir[2]);

const Real_v distOut = Min((Sign(invDir[0]) * box.fDimensions[0] - point[0]) * invDir[0],

(Sign(invDir[1]) * box.fDimensions[1] - point[1]) * invDir[1],

(Sign(invDir[2]) * box.fDimensions[2] - point[2]) * invDir[2]);

dist = Blend(distIn >= distOut || distOut <= Real_v(kTolerance), Infinity<Real_v>(), distIn);

}

Box Implementation of DistanceToIn()

Performance of VecGeom Box
Algorithms

78

VecGeom Speedups on Knights Landing

79

Field propagation overview

• Field propagation involves
solution of Ordinary
Differential Equation

• Typically Runge-Kutta methods
are used (as in Geant4)

• In GeantV created vectorised
Runge-Kutta propagation

• Charged tracks in a basket are
sent to the FieldPropagation
classes

• Vectorised over tracks

• Challenges are
• To use mostly vector operations
• To ensure that all vector lanes

are doing useful work

x0, p0

x1, p1, Δx, Δp
x2, p2, Δx, Δp

• Motion in field requires solving ODE for
endpoint x, p after length s

• Runge-Kutta step: evaluate B-field, estimate
x, p, Δx, Δp

• Successful if |Δx| < ε s & |Δp| < ε |p|

• Each step of a Runge-Kutta algorithm is easy
to vectorise

• But different tracks (vector lanes) can take
different number of iterations to finish
integration

• The ‘driver’ class which calls the RK ‘stepper’
must play coordinate the work

Vector propagation in Field–v2
1

2

3

4

5

6

7

failed

ok

done

start

keep

• A step can either
• Fail,

• Succeed but not get to the end (“ok”)

• Finish the integration (“done”)

• Driver rewritten to use
• Tight loop with all lanes integrating until at

n>=threshold reach the end of interval

• Reload lanes with new work.

• Profiled with (semi-)realistic RZ field
• Interpolated from sampled CMS field

Load 1 track

Load 2 tracks

Call # 1

Call # 3

Call # 2

Performance with baskets for field only
Basket size 16 32 64 128 256 512 1024

Unused lanes 0.186 0.130 0.073 0.039 0.023 0.015 0.007

Unused lanes
(reordering)

0.140 0.066 0.025 0.003 0.002 0.001 0.001

Event
window

Tracks/event Basket sz= 16 32 64 128 256 512 1024

16 16 3.4 (2) % 5.6 (2) % 4.0 (2) % 4.1 (2) % 5.2(2) % 3.6 (2) % 1.6 (2) %

1 16 4.7 (2) % 5.0 (2) % 5.5 (2) % 6.8(2) % 7.0 (3) %

1 8 reordering 6.6 (3) % 5.3 (3) % 6.9 (3) % 7.2 (4) % 7.9(4) % 8.2 (3) % 7.3(3) %

Benchmarks on 1 thread of MacBook Pro 2016, 2.6 GHz Core i7 6700HQ (Skylake), 16 GB LPDDR3 2133MHz
RAM, with clang from Xcode 10.1.
Baseline is “Basket off” configuration with 16 event window with 16 tracks/event (10 GeV e-).
‘Reordering’ means bringing forward tracks with length / radius(curvature) over threshold (=1.5)

Fraction of lanes which have finished integration.

EM Physics
Backup slides

83

Vectorized EM physics models – Intro

• A simulation step, limited by a discrete physics interaction, can be divided into two
distinct parts

• Select the physics interaction with the corresponding interaction point:
• Driven by the integrated cross section values of the physics
• Cross section table lookups and interpolations (Memory bounded operations with very little

mathematical computations)

• Invoke the interaction (final state sampling):
• Computation of the post-interaction kinematical state of the primary particle
• Generation of possible secondary particles
• Contains significantly more mathematical operations (CPU bounded)

• The final state computation includes generation of stochastic variables from their
probability distributions determined by the corresponding differential (in energy,
angle) cross sections (DCS) of the underlying physics interaction

• Composition-rejection method is typically used in Geant4 to sample from these PDFs

8
5

• Rejection Sampling:
• Unpredictable n. of loop executions: Exit condition depends on the outcome of the stochastic variable
• Non deterministic behavior for the different tracks filled into the vector register, resulting in undesired

divergence and eventually loss of potential computational gain

• Solution: lane refilling

• Table Sampling:
• Alias method efficiently generates samples of discrete stochastic variables

• An intermediate discrete random variable is introduced by partitioning the range of the original continuous
PDFs into distinct intervals

• new discrete variable is the probability of having the original continuous variable lying in a given interval

• Appropriate partitions of the original variable range and/or variable transformations are used to transform the
original PDF to a smooth function, in order to have a linear behavior of the PDF over each discrete interval

Physics

Model

Handler

Physics

Model

Handler
Physics

Model

Handler

SOA Primary

LightTracks

Updated SOA Primary

LightTracks &&

Secondary LightTracks

KleinNishina Model

MollerBhabha Model

SeltzerBerger Model

Physics

Stage

Select()

DoItVector()

Geant

Tracks

Vectorized code

Rejection Table

Sampling techniques for the Final State generation

0

1

2

3

4

5

6

7

8

KleinNishina MollerBhabha SeltzerBerger RelBrem BetheHeitler RelPair Pos2Gamma SauterGavrila

Sp
e

ed
U

p

ScalTable/VecTable ScalRej/VecRej ScalRej/VecTable

In KleinNishina model, Rejection
Sampling is faster both in scalar and
vector mode

In Relativistic Pair model, Table
Sampling is faster both in scalar and
vector mode

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

Speedup of the final state generation of different electromagnetic physics models

obtained with SIMD vectorization in case of different sampling algorithms. The

results were obtained by using Google Benchmarks on an IntelR Haswell CoreTM i7-

6700HQ, 2.6 GHz, with Vc backend and AVX2 instruction set processing 256

tracks.

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

Microbenchmark results for final state generation in case of the high

energy e−/e+ pair production model under different primary energy (80-

100 [GeV] and 101-500 [GeV]) and target material conditions (left:

PbWO4, right: Pb).

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

0.97
1.00

1.17

1.33
1.35 1.36

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5MeV 10 MeV 100 MeV 1GeV 10GeV 70GeV

Sp
ee

dU
p

ScalarTable/ScalarRej

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

Speedup of the rejection based

final state sampling compared to

the sampling table based one in

case of the Bethe-Heitler e−/e+

pair production model, as a

function of the primary γ particle

energy.

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

• Main message: there is no generic solution to achieve speedup
• Final state EM speedup: between 1.5-3 on Haswell, 2-4 on Skylake with AVX2
• We never tested vectorized EM physics with AVX512 (speedup expected to be doubled):

lack of person power

• The computational diversity of the physics models directly implies a variation of
the optimal algorithmic solution as a function of the models.

• In addition, the dependence of the underlying physics on some external
conditions such as target material composition or primary particle energy
introduces further variations

• In order to maximize the achievable gain from vectorization it’s necessary to
profile all the available final state generation algorithms as a function of:

• The complexity of the underlying DCS
• Target material composition
• Primary particle energy

• Due to lack of person power the profiling activity was not completed

Vectorized EM physics models – lesson learned

MC truth
Backup slides

90

GeantV kinematics output (MC truth)

• handling of MC truth is problematic per se
• which particles to store, how to keep connections, where to connect hits

• multithreading adds the complexity
• order of processing of particles is ‘random’

• processing of ‘daughter’ particle may be completed before ‘mother’ particle ‘end of life’

• events need to be ‘put together’ after parallel processing

91

MC truth

• we can’t (and we don’t need) to store all particles
• typically no delta-e, no low-E gamma showers, etc needed

• we need to store particles necessary to understand the given event
(process)

• we need to store particles to associate hits

• in all cases, we need to (re)connect particles to have consistent event
trees

92

MC truth handling requirements

• no MC truth-handling strategy is perfect, nor complete, but:
• we need to give user a way to decide

• transport need to provide/allow
• links between mother and daughter particles
• the possibility to flag particles as ‘to be stored’
• possibility to introduce ‘rules’ what to store
• a way to ‘reconnect’ tracks and hits if some are skipped

• if we don’t store a particle, we need to update the daughter particles to point back to
the last stored one in the chain

• for the final output we need to have some event record
• for our proof of principle, we can start with HepMC

93

MC truth handling architecture

• light coupling to transport
• minimal ‘disturbance’ to transport threads

• maximal flexibility of implementing custom particle history handlers

• interface provided by MCTruthMgr
• receives (concurrent) notifications from transport threads about

• adding (primary or secondary) new particles

• ending particles

• finishing events

• delegates processing of particles history to concrete MC truth implementation

94

MC truth infrastructure and users code

• MCTruthMgr provides interface and underlying infrastructure for
particles history

• light-weight transient, intermediate event record

• users code:
• decision making (filtering) algorithm

• conversion to users’ event format

• concrete example implementation provided based on HepMC3

95

MC truth call sequence

96

Tra
n

sp
o

rtTra
c

k
s

#
2

Tra
n

sp
o

rtTra
c

k
s

#
1

add track to event #n

add track to event #m

add track to event #i

new track

new track

new track

add track to event #nnew track

add track to event #mnew track

end track

end track

end track

GeantPropagator MCTruthMgr

stop track

stop track

stop track

close event #n

HepMCTruth

close event #m

H
e

p
M

C
.ro

o
t

writeHepMC event

writeHepMC event

users’ code

MC truth output status

• GeantV MC truth manager provides handles to deal with particles
history

• allows ‘physics’ studies

• first implementation, further iterations possible to look in detail at
performance

• example implementation based on HepMC3 provided

• further performance testing/improvements in highly concurrent
environment to be studied

97

Vectorized EM physics
Backup slides

98

Vectorized EM physics models – Intro

• A simulation step, limited by a discrete physics interaction, can be divided into two
distinct parts

• Select the physics interaction with the corresponding interaction point:
• Driven by the integrated cross section values of the physics
• Cross section table lookups and interpolations (Memory bounded operations with very little

mathematical computations)

• Invoke the interaction (final state sampling):
• Computation of the post-interaction kinematical state of the primary particle
• Generation of possible secondary particles
• Contains significantly more mathematical operations (CPU bounded)

• The final state computation includes generation of stochastic variables from their
probability distributions determined by the corresponding differential (in energy,
angle) cross sections (DCS) of the underlying physics interaction

• Composition-rejection method is typically used in Geant4 to sample from these PDFs

1
0
0

• Rejection Sampling:
• Unpredictable n. of loop executions: Exit condition depends on the outcome of the stochastic variable
• Non deterministic behavior for the different tracks filled into the vector register, resulting in undesired

divergence and eventually loss of potential computational gain

• Solution: lane refilling

• Table Sampling:
• Alias method efficiently generates samples of discrete stochastic variables

• An intermediate discrete random variable is introduced by partitioning the range of the original continuous
PDFs into distinct intervals

• new discrete variable is the probability of having the original continuous variable lying in a given interval

• Appropriate partitions of the original variable range and/or variable transformations are used to transform the
original PDF to a smooth function, in order to have a linear behavior of the PDF over each discrete interval

Physics

Model

Handler

Physics

Model

Handler
Physics

Model

Handler

SOA Primary

LightTracks

Updated SOA Primary

LightTracks &&

Secondary LightTracks

KleinNishina Model

MollerBhabha Model

SeltzerBerger Model

Physics

Stage

Select()

DoItVector()

Geant

Tracks

Vectorized code

Rejection Table

Sampling techniques for the Final State generation

0

1

2

3

4

5

6

7

8

KleinNishina MollerBhabha SeltzerBerger RelBrem BetheHeitler RelPair Pos2Gamma SauterGavrila

Sp
e

ed
U

p

ScalTable/VecTable ScalRej/VecRej ScalRej/VecTable

In KleinNishina model, Rejection
Sampling is faster both in scalar and
vector mode

In Relativistic Pair model, Table
Sampling is faster both in scalar and
vector mode

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

Speedup of the final state generation of different electromagnetic physics models

obtained with SIMD vectorization in case of different sampling algorithms. The

results were obtained by using Google Benchmarks on an IntelR Haswell CoreTM i7-

6700HQ, 2.6 GHz, with Vc backend and AVX2 instruction set processing 256

tracks.

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

Microbenchmark results for final state generation in case of the high

energy e−/e+ pair production model under different primary energy (80-

100 [GeV] and 101-500 [GeV]) and target material conditions (left:

PbWO4, right: Pb).

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

0.97
1.00

1.17

1.33
1.35 1.36

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

5MeV 10 MeV 100 MeV 1GeV 10GeV 70GeV

Sp
ee

dU
p

ScalarTable/ScalarRej

- Architecture: Intel Haswell
Core i7-6700HQ, 2.6 GHz
- Instruction Set: AVX2
- Backend: Vc
- Detector: Lead
- #baskets: 256
- Run with GoogleBenchmarks

Speedup of the rejection based

final state sampling compared to

the sampling table based one in

case of the Bethe-Heitler e−/e+

pair production model, as a

function of the primary γ particle

energy.

[1]

Vectorized EM physics models

M. Bandieramonte, M. Novak

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_02031.pdf

• Main message: there is no generic solution to achieve speedup
• Final state EM speedup: between 1.5-3 on Haswell, 2-4 on Skylake with AVX2
• We never tested vectorized EM physics with AVX512 (speedup expected to be doubled):

lack of person power

• The computational diversity of the physics models directly implies a variation of
the optimal algorithmic solution as a function of the models.

• In addition, the dependence of the underlying physics on some external
conditions such as target material composition or primary particle energy
introduces further variations

• In order to maximize the achievable gain from vectorization it’s necessary to
profile all the available final state generation algorithms as a function of:

• The complexity of the underlying DCS
• Target material composition
• Primary particle energy

• Due to lack of person power the profiling activity was not completed

Vectorized EM physics models – lesson learned

5. Performance results
Backup slides

105

Performance Comparisons: Tested Platforms

• Process-Cores-CPU[GHz]-Memory[GB]-Cache[MB]-SIMD

• Cache size

• * Processor Convention: SIMD-CPU-Cache

Locality

• Single track mode (strk)
• Emulate Geant4 style tracking

• A meaure of locality: GeantV (strk)/GeantV(default)

• CPU Time in [sec] and their ratios

• The data locality does not explain the performance difference between Geant4 and
GeantV (scalar)

Hardware Counters: L2 Cache and L3 Cache
• L2 cache miss (~12 cycles): in [Billion] counters

• ICM (DCM) = Instruction (data) cache miss

• GeantV has less ICM and Geant4 has less DCM (AVX/AVX2)

• L3 cache miss (~38 cycles): in [1B] counters

• TCM (TCA): Total Cache Miss (Access)

Performance summary table (go to backup)

CPU OS gcc SIMD Cache GV G4 [sec]

Intel i7

2.5GHz

Ubuntu

16.04

5.4.0 AVX2 8 MB 1 ± 0.01 1 ± 0.03

Intel Core i7-

4510U 2GHz

Ubuntu

16.04

5.4.0 AVX 4MB 1.39 ± 0.01 0.98 ± 0.01

AMD A10-

7700k

Fedora

Workstation

29

8.2.1 AVX 4 MB 1.94 ± 0.01 2.48 ± 0.02

Intel R

1.8GHz

Fedora

Workstation

29

8.3.1 SSE4 2 MB 2.95 ± 0.01 2.15 ± 0.01

Intel Centrino 2 Fedora

Workstation

29

8.2.1 AVX± 4 MB 2,76 ± 0.01 3.75 ± 0.02

11AMD

e-300

Ubuntu

18.10

8.2.0 SSE2 1 MB Not Vc
compatible

13.32 ± 0.01

Normalized performance factor with respect to the Intel i7 2.5GHz taking
into account the clock speed

Geant4 fluctuates more than GeantV over different tested platforms

Integration with experimental
frameworks
Backup slides

110

Status of GeantV Integration
in CMSSW

Kevin Pedro, Sunanda Banerjee

(FNAL)

October 4, 2019

• Integration testing of GeantV w/ CMSSW has several goals:

o Demonstrate benefits of co-development between R&D team &
experiments

o Exercise capabilities of CMSSW framework to interface with external
processing (ExternalWork mechanism) and handle track-level
parallelization in detector simulation

o Measure any potential CPU penalties when running GeantV in CMSSW

o Estimate cost of adapting to new interfaces and eventually migrating to
new (and potentially backward-incompatible) tools such as GeantV

 Thinking forward to HPC/GPU solutions

• Not planning to migrate CMS simulation to GeantV

o This is an R&D exercise

Introduction

112

• Repositories: install-geant, SimGVCore

Generate events in CMSSW framework, convert HepMC to GeantV format

Build CMSSW geometry natively and pass to GeantV engine (using TGeo)

• Using constant magnetic field, limited EM-only physics list

Calorimeter scoring adapted

Run GeantV using CMSSW ExternalWork feature:

o Asynchronous, non-blocking, task-based processing

Output in CMS format, immediately suitable for digitization etc.

GeantV Integration Tests in CMSSW

113

External

processing

CMSSW

thread
acquire()

GeantV

produce()(other work)

https://github.com/kpedro88/install-geant
https://github.com/kpedro88/SimGVCore

• Sensitive detectors (SD) and scoring trickiest to adapt

o Necessary to test “full chain” (simulation → digitization → reconstruction)

o Significantly more complicated than Geant4 MT

• Duplicate SD objects per event per thread, then aggregate
→ 4 streams, 4 threads = 16 SD objects

o GeantV TaskData supports this approach

Use template wrappers to unify interfaces and operations

o Ensure exact same SD code used for Geant4 & GeantV

o Minimize overhead (no branching or virtual table)

Geant4 vs. GeantV Scoring

114

Event Geant4 SDSDSDParticles Hits

Event Geant4 SDSDSDParticles Hits

Geant4 shares memory, but each

event processed in separate thread

Event

GeantV

SDSDSDHits

Event SDSDSD

Each event processed in multiple

threads, mixed in with other events

?

GeantV Data Aggregation

115

• Each ScoringClass object has instance of CaloSteppingAction

o Some additional memory overhead from duplicated class members

 Attempt to minimize this by storing volume maps in magic static struct

• Merged ScoringClass output copied to cache attached to Event object

o GeantV may consider event finished before CMSSW has written output
→ copy to cache, then immediately clear ScoringClass objects
(avoid possible race conditions)

RunManager

threads

TaskData

DataPerThread

TaskData

DataPerThread

events

ScoringClass ScoringClass ScoringClass ScoringClass

1 2 1 2

A B

UserApplication

TaskDataHandle

Event

ScoringCache

merge

• Settings:

o Geant4 10.4p2 w/ VecGeom v0.5 (scalar)

o GeantV pre-beta-7 w/ VecGeom v1.1

o All CMS-specific G4 optimizations disabled

o Same production cuts (default 1mm)

o Single thread (reproducible pRNG sequences)

o Generate 1000 events w/ single electron, E = 100 GeV, η = 1.0, φ = 1.1

• Tests: (same generated events used for G4 and GV)

1. No field (B = 0)

2. Constant field (B = 3.8 T)

(more in backup)

Physics Validation

116

• The number of entries differs by 0.3% (7.4%) in EB (EE)

• The means differ by 0.2% for EB and 2.5% for EE

1. Energy Deposits for 100 GeV e- (B=0)

117

• Means differ by 0.07% for EB and 0.13% for EE

• GeantV and Geant4 applications provide roughly the same distributions

1. Hit Time for 100 GeV e- (B=0)

118

• The number of entries differ by 0.4% (23.3%) in EB (HB)

• The means differ by 2.2% for EB and 8.8% for HB

2. Energy Deposits for 100 GeV e- (B=3.8)

119

• The means differ by 0.03% for EB and 1.15% for HB

• There is a small difference in the physics results of GeantV and Geant4
applications in the presence of B-field

2. Hit Time for 100 GeV e- (B=3.8)

120

• Settings:

o GeantV pre-beta-7+ (63468c9b)

 Enabled: vectorized multiple scattering, field (not physics)

o Generate 500 events, 2 electrons w/ E = 50 GeV, random directions

o Keep # events / thread constant (copy & concat 500 generated events)

o Use same generated events in G4 and GV

o Keep unused threads busy

o Disable output

• Machine: FermiCloud VM w/

o Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz, 4096 KB cache

o sse4.2 instructions

• Track wall clock time & memory with CMSSW TimeMemoryInfo tool

o Measures VSIZE, RSS per event

o Calculate speedup from wall time
(divided by # threads used, since # events / thread is constant)

Performance Tests

121

• VM CPU has relatively small cache

o Known that major component of GeantV speedup arises from smaller
library → fewer cache misses

To characterize CMSSW performance results, first run built-in GeantV
FullCMS standalone test

o Single thread, settings as close to previous slide as possible
(see test script: testStandalone.sh)

o NB: different physics list used in standalone vs. CMSSW

• Results:

o GeantV: RealTime=756.002s CpuTime=753.09s

o Geant4: User=1617.36s Real=1618.52s

→2.14× speedup (standalone)

Characterization

122

file://data/geant/test3/GV/CMSSW_10_2_0/src/SimGVCore/Application/test

• GV 2.6× faster than G4 single thread, still ~2.2× faster in MT
• GV single track mode similar to basketized
• G4 has better scaling w/ # threads than GV

Time Performance

123

speedup =

time(threads=1)/time(threads=N)

• Memory grows ~linearly w/ # threads (expected)

• GV uses more memory than G4 (expected)

• Single track mode uses similar memory to basketized

Memory Performance

124

• To complete the goals of CMS R&D studies for the paper:

o Full magnetic field map

o Test on machines w/ different cache sizes

• Stretch goals/notes for future similar projects:

o Random number generator

o Adapt scoring classes for other detectors (beyond calorimeters)

o Combine w/ other simulation improvements

 Notably Russian Roulette & HF shower library, which give largest gains

• If GeantV project were to continue:

o Better solution for geometry conversion than TGeo

o Sensitive volume/detector functionality

o Vectorized hadronic physics

o Improve threading, memory management, and ownership models

o Decouple event loading & task launching in ExternalLoop mode

o Event-wise scoring rather than current thread-wise scoring w/ TaskData

What Would Be Next?

125

CMS studies met ~all goals laid out

o Co-development led to improvements and bug fixes in GeantV to facilitate experiments’ use

o One of the first projects to exercise CMSSW ExternalWork feature

o Physics validation & CPU measurements show very positive results

o Path to adapt interfaces efficiently is laid out:
“Rosetta stone” mostly contained in StepWrapper and VolumeWrapper

Demonstrator to test major elements of GeantV-CMSSW integration is ready

o Up to 2.6× speedup in CMSSW application

o Will finalize results for paper

o The CMS simulation group thanks the GeantV R&D team for providing support to this integration
exercise and making it a successful co-development endeavor

Conclusions

126

Geant4 GeantV

StepWrapper StepWrapper

VolumeWrapper VolumeWrapper

https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/StepWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloG4/interface/VolumeWrapper.h
https://github.com/kpedro88/SimGVCore/blob/SensDetTemplateWrapper/CaloGV/interface/VolumeWrapper.h

Extras

Goal: use exact same SD code for Geant4 and GeantV

• Problem: totally incompatible APIs

o Example: G4Step::GetTotalEnergyDeposit() vs. geant::Track::Edep()

• Solution: template wrapper with unified interface
e.g. StepWrapper<T>::getEnergyDeposit()

o SD code only calls the wrapper

o Wrapper stores pointer to T (minimize overhead)

• Current wrappers:

o BeginRun

o BeginEvent

o Step

o Volume

o EndEvent

o EndRun

Template Wrappers

128

• Collect Geant4/GeantV-specific types and wrappers into unified Traits class:
struct G4Traits {

typedef G4Step Step;

typedef sim::StepWrapper<Step> StepWrapper;

};

struct GVTraits {

typedef geant::Track Step;

typedef sim::StepWrapper<Step> StepWrapper;

};

• Provides standardized typenames to be used by SD class:
template <class Traits> class CaloSteppingActionT : …,

public Observer<const typename Traits::Step *>

{

public:

void update(const Step * step) override {

update(StepWrapper(step)); }

private:

// subordinate functions with unified interfaces

void update(const StepWrapper& step);

};

Traits

129

Organization

130

CaloG4

CaloSteppingAction (.h, .cc)

Old

Calo

CaloSteppingActionT (.h, .icc)

Wrappers (.h)

CaloG4

CaloSteppingAction (.h, .cc)

G4 Wrappers (.h), Traits (.h)

CaloGV

CaloSteppingAction (.h, .icc)

GV Wrappers (.h), Traits (.h)

New

• SD interface & implementation in Calo (.icc file), w/ unimplemented wrapper interfaces

• G4/GV wrapper specializations in CaloG4/GV, w/ specific instances of templated SD
class → isolate dependencies

• Two approaches to scoring in CMSSW:

1. Inherit from G4VSensitiveDetector (Geant4 class)
→ automatically initialized for geometry volumes marked as sensitive

2. Inherit from SimWatcher (CMSSW standalone class)
→ need to specify names of watched geometry volumes

• CaloSteppingAction is a demonstrator class w/ approach 2

o Simplified version of ECAL and HCAL scoring

o Less dependent on Geant4 interfaces

• “Real” SD code uses approach 1

More work to extract Geant4 dependencies will be necessary

o Some SD class methods directly from Geant4 (via inheritance)

o Need to mock up Geant4-esque interfaces w/ dummy classes for GeantV

Scoring Approaches

131

3. Generate 1000 events of single electrons at 2, 10 and 50 GeV at a fixed
direction and compare GeantV against Geant4 with magnetic field off and
on at 3.8 Tesla

4. Generate 100 events of 50 GeV double electrons at 50 GeV with -3 < η < 3
and 0 < φ < 2π, run in multi-threaded mode (4 threads), B = 0 Tesla

5. Repeat multi-threaded test with B = 3.8 Tesla

More Physics Validation

132

• Number of hits is the same for all 3 energies. The differences are at the level
of 0.1/0.3/0.2% for 2, 10 and 50 GeV

• The means differ by 0.8/0.6/0.4% at the three energies

3. Energy Deposit with B = 0

133

2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

• Number of hits is the same for all 3 energies. The differences are at the level
of 27.7/6.7/1.3% for 2, 10 and 50 GeV

• The means differ by 0.5/1.6/1.7% at the three energies

3. Energy Deposit with B = 3.8

134

2 GeV Electrons 10 GeV Electrons 50 GeV Electrons

• Events are generated with 50 GeV electrons having random direction within
a limited range of η and φ

• The agreement is pretty good in the B=0 option for both # of hits as well as
in the shape of the distributions for EB and EE

4. Energy Deposit with B = 0, MT

135

• Hit time distributions are also in good agreement for the B=0 option in EB
as well as in EE

4. Hit Times with B = 0, MT

136

• Same events (50 GeV electrons, random direction within a limited range of
η and φ) are simulated in a uniform B-field option of 3.8 Tesla

• The agreement is still good for both # of hits as well as in the shape of the
distributions for EB and EE

5. Energy Deposit with B = 3.8, MT

137

• Hit time distributions are also in reasonable agreement for the B = 3.8 Tesla
option in EB as well as in EE

5. Hit Times with B = 3.8, MT

138

• HF shower library, Russian
Roulette have largest impacts

• VecGeom, mag. field
improvements entered
production in past ~year

o Enabled by validating and
using latest Geant4 versions

• Cumulative effects: overall,
simulation is 6.2× (4.1×) faster
for () vs. default
Geant4 settings

CMS full simulation is at least
8× faster than ATLAS

CMS Simulation Optimizations

139

Relative CPU usage

Configuration MinBias ttbar

No optimizations 1.00 1.00

Static library 0.95 0.93

Production cuts 0.93 0.97

Tracking cut 0.69 0.88

Time cut 0.95 0.97

Shower library 0.60 0.74

Russian roulette 0.75 0.71

FTFP_BERT_EMM 0.87 0.83

VecGeom (scalar) 0.87 0.93

Mag. field step,track 0.92 0.90

All optimizations 0.16 0.24

