Statistics and Error propagation

Christian Bohm - Stockholm University

Measurement statistics

To use a measurement result one must know about its reliability and precision
Most measurements are affected by many random processes and are only fully characterized by their probability distribution

In statistical terms this is a stochastic variable
The probability distribution function can be determined from knowledge of the random processes involved or determined experimentally by performing a large number of measurements

A stochastic variable x can assume different values with the probability
density function $f(x)$ and x is therefore completely defined by f
$y=2 x$ has a probability density as well and is thus also a stochastic variable, now with the probability distribution $f(x / 2)$

Distribution functions

Probability distribution function (PDF) -> Complete information about all statistic properties of the random variable
Main classification discrete - continuous distributions which distribution function - depend on the measuring process

Other names: density function or frequency function

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}) \geq 0 \\
\int_{-\infty}^{\infty} f(x) d x=1
\end{gathered}
$$

Probabilities are always positive
The probability for any value is 1

The measurement result is completely characterized by its PDF

If it is not possible to identify the pdf of the result - one should characterize it as well as possible
The most important parameter is position, then width, skewness, etc. (these parameters can be determined with good precision from a smaller amount of data)

Position measures

The expectation value of x

$$
E(x)=\int_{-\infty}^{\infty} x f(x) d x \quad \begin{aligned}
& \text { f's 1:st moment } \\
& \text { (center of gravity) }
\end{aligned}
$$

Choice of parameter depend on the type of measurement Mean most common

Width measures

Population variance

 f's 2 : $n d$ central moment

$$
=E\left(x^{2}\right)-\mu^{2}
$$

f's 2:nd moment

Choice of parameter depend on the type of measurement
Standard deviation and Full Width Half Maximum (FWHM) most common
For a normal distribution FWHM=2.355б

Discrete Distributions
 Binomial distribution

Repeating independent elementary binary events (succeed - fail) each with the probability p
E.g.

Tossing coins elementary event - coin toss
Drawing tickets with replacement
Radioactive decay
elementary event - draw elementary event - decay of a nucleus
Monte Carlo simulations elementary event - one case
Parameters $\quad \mathbf{O} \leq \boldsymbol{p} \leq \mathbf{1}$ probability
$\mathrm{N}>0$ number of trails
Variable
Probability distribution
Mean
Variance

$$
\begin{aligned}
& r \\
& p(r)=\binom{N}{r} p^{r}(1-p)^{N-r} \\
& E(r)=N p \\
& V(r)=N p(1-p)
\end{aligned}
$$

The multinomial distribution

Repeated independent elementary events with many (k) outcomes each with the probability p_{i} where $\quad \mathbf{1} \leq \boldsymbol{i} \leq \boldsymbol{k}$
e.g.

Throwing dices
Monte Carlo simulations with several outcomes
Histograms

Parameters $\quad \mathbf{O} \leq \boldsymbol{p}_{\boldsymbol{i}} \leq \mathbf{1}$ probability
k , the number of outcomes N number of trails
Variable
r_{i}

Probability distribution
Mean

$$
\begin{aligned}
& p\left(r_{1}, r_{2},, r_{k}\right)=\frac{N!}{r_{1}!r_{2}!\cdots r_{k}!} p^{r_{1}} p^{r_{2}} \cdots p^{r_{k}} \\
& E\left(r_{i}\right)=N p_{i} \\
& V\left(r_{i}\right)=N p_{i}\left(1-p_{i}\right) \\
& \left.\operatorname{Cov}\left(r_{i}, r_{j}\right)\right)=-N p_{i} p_{j}
\end{aligned}
$$

2 dices

Probability for one 5 and one 2

$$
p(2,5)=\frac{2!}{0!\cdot 1!\cdot 0!\cdot 0!\cdot 1!\cdot 0!} \cdot\left(\frac{1}{6}\right)^{0} \cdot\left(\frac{1}{6}\right)^{1} \cdot\left(\frac{1}{6}\right)^{0} \cdot\left(\frac{1}{6}\right)^{0} \cdot\left(\frac{1}{6}\right)^{1} \cdot\left(\frac{1}{6}\right)^{0}=\frac{2}{36}
$$

The Poisson distribution

The probability for a certain number of events during a time period if the probability per time unit for such a event is constant (l) and independent of what happened before. One can say that the process have no memory
E.g. Telephone switchboard load

Parameter
Variabel
Probability distribution
Mean
Variance

$$
N \rightarrow \infty \quad p \rightarrow 0
$$

Binomial distribution --> Poisson distribution with $\quad \lambda=\boldsymbol{N} \boldsymbol{\lambda}$ $\mathrm{Np}=$ const
Radioactive decays (approx. Poisson)
Histograms with many events (approx Poisson)

Normal distribution

The law of the large numbers

According to the law of large numbers

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{n}=\lim _{n \rightarrow \infty} \bar{X}=\mu
$$

The sample mean will approach the true value as the size of the sample increases:

> More generally, one can say:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} g\left(X_{n}\right)=\int_{-\infty}^{\infty} g(x) \cdot f(x) \cdot d x=g(\mu)
$$

When applied to the variance this implies:

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N}\left(X_{n}-\mu\right)^{2}=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \cdot d x=\sigma^{2}
$$

Statistics

A statistic is a function of stochastic variables

$$
\mathrm{T}_{\mathrm{N}}=\mathrm{f}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{X}_{\mathrm{N}}\right) \text { is a statistic }
$$

The calculation $\{\mathrm{X}\}$--> T_{N} implies a data reduction

Estimators

Let us use the statistics T_{N} to estimate the physical parameter θ

$$
\mathrm{T}_{\mathrm{N}} \text { is the called an estimator }
$$

An infinitely large sample should give the true value

$$
\text { If } \lim _{N \rightarrow \infty} T_{N}=\theta \text { then } \mathrm{T}_{\mathrm{N}} \text { is consistent }
$$

The mean of a large number of small sample estimators should give the true value
If $E\left(T_{N}\right)=\theta$ for all N then $\mathrm{T} \mathrm{N}^{\text {unbiased }}$

consistent

Unbiased
biased
inconsistent

If T_{N} uses the information well it is effective
If T_{N} is not sensitive to small variations in the distribution then $\mathrm{T} \mathrm{N}^{\text {is robust }}$
One can say that lack of consistency correspond to systematical errors
And lack of efficiency correspond to statistical errors

Samples

If you have a sample with N measured values x_{i} then The sample mean is

$$
\bar{x}=\frac{1}{N} \sum_{i} x_{i}
$$

It is a consistent estimator of the population mean μ (the law of large numbers)

One also easily show that it is unbiased, since the mean of many small samples is the same as the mean of one large sample

$$
s^{2}=\frac{1}{\Delta \nu} \sum_{i}(x-\bar{x})^{2} \quad \text { and } \quad s^{2}=\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)^{2}
$$

are both consistent estimators of σ^{2} but only the right one is unbiased, but why $\mathrm{N}-1$?

\bar{x} is more central in the sample than μ thus

$$
\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \leq \sum_{i}\left(x_{i}-\mu\right)^{2}
$$

$\mathrm{N}-1$ compensates for the under estimation

Estimator examples

If we know that \mathbf{r} is binomially distributed then \mathbf{r} / \mathbf{N} is a consistent estimator of $\boldsymbol{\mu}$ or \mathbf{p} (according to the law of large numbers):

$$
\hat{p}=r / N
$$

If we know that \mathbf{r} is Poisson distributed then \mathbf{n} is a consistent estimator of $\boldsymbol{\lambda}$ (according to the law of large numbers):

$$
\hat{n}=\lambda
$$

Since small samples also have the mean $\boldsymbol{\lambda}$ it is also unbiased The Poisson distribution also implies that variance can be estimated by $\hat{\boldsymbol{n}}$
and

$$
\sigma=\sqrt{\lambda} \approx \sqrt{n}
$$

Simple estimators

Find a representative value (estimator) for a physical parameter
which corresponds to X

In order to find which estimator gives the most representative value you need a figure of merit to minimize
E.g. you can minimize $\sum_{i}\left(X_{i}-\hat{x}\right)^{2}$

$$
\text { giving } \quad \hat{x}=\frac{1}{N} \sum_{i} X_{i}
$$

If X_{i} has different variances σ_{i}^{2} you can instead use $\sum_{i} \frac{\left(X_{i}-\hat{x}\right)^{2}}{\sigma_{i}^{2}}$

$$
\text { Minimizing --> } \quad \hat{x}=\frac{\sum x_{i} / \sigma_{i}^{2}}{\sum 1 / \sigma_{i}^{2}}
$$

The Likelihood function

$L(X \mid \theta)=P(X \mid \theta)$ is called the likelihood function
which expresses the probability to get the result X if the parameter is θ

$$
L\left(X_{1} X_{2} X_{3} \mid \theta\right)=L\left(X_{1} \mid \theta\right) L\left(X_{2} \mid \theta\right) L\left(X_{3} \mid \theta\right) \text { if } X_{1}, X_{2} \text { and } X_{3} \text { are independent }
$$

In the maximum likelihood (ML) method you choose the θ that gives maximum L or, which is the same, maximum lnL.

If the X are normally distributed ML is identical to LSM (the least square method)

The precision in the ML-determination is better with a more narrow maximum .
Narrow maximum (small variance) --> more information about θ
More observations (smaller variance) --> narrower maximum

approximate information about position

better information information about position
You can define information (according to Fischer) as

$$
\boldsymbol{I}=-\boldsymbol{E}\left(\frac{\partial^{2} \ln \boldsymbol{L}}{\partial \boldsymbol{O}^{2}}\right) \text { evaluated where } \mathrm{L} \text { is maximal }
$$

The information is then additive

$$
\mathrm{I}\left(\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3}\right)=\mathrm{I}\left(\mathrm{X}_{1}\right)+\mathrm{I}\left(\mathrm{X}_{2}\right)+\mathrm{I}\left(\mathrm{X}_{3}\right)
$$

$$
\text { if } X_{1}, X_{2} \text { and } X_{3} \text { are independent }
$$

Covariances and correlations

If we have two random variables then as x varies around μ_{x}, y will vary around μ_{y} The covariance will tell us if these variations are connected:

$$
\sigma_{X Y}=\operatorname{cov}(X, Y)=\sum_{i}\left(X_{i}-\mu_{X}\right)\left(Y_{i}-\mu_{Y}\right) f(X, Y)
$$

or for continuous variables:
$\operatorname{cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=\int_{-\infty}^{\infty}\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right) f(X, Y) d X d Y$
The covariance matrix is defined as:: $\quad V=\left(\begin{array}{cc}\operatorname{var}(x) & \operatorname{cov}(x, y) \\ \operatorname{cov}(x, y) & \operatorname{var}(y)\end{array}\right)$

$$
\operatorname{cov}(\mathrm{x}, \mathrm{y})=\operatorname{cov}(\mathrm{y}, \mathrm{x}) \rightarrow \mathrm{V} \text { is symmetric }
$$

The magnitude of the normalized correlation coefficient is defined as:

$$
\operatorname{corr}(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

is always less or equal to 1 :

Whether the pattern is "circular" or "elliptic" along the coordinate axes, does not affect the correlation Since the "ellipticity" can be removed by re-scaling

But it is important to realize that:

Here corr $(\mathrm{x}, \mathrm{y})=0$ for the combined sample $1+2$ but x and y are definitely not independent

Addition of two stochastic variables

$\operatorname{Var}(x+y)=\sigma(x+y)^{2}=\int_{-\infty}^{\infty}\left(x+y-\mu_{x}-\mu_{x}\right)^{2} f(x) g(y) d x d y=$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\left(x-\mu_{x}\right)^{2}+\left(y-\mu_{y}\right)^{2}+2\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right) f(x) g(y) d x d y=
$$

$$
=\int_{-\infty}^{\infty}\left(x-\mu_{x}\right)^{2} f(x) d x+\int_{-\infty}^{\infty}\left(y-\mu_{y}\right)^{2} g(y) d y-2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\left(x-\mu_{x}\right)\left(y-\mu_{y}\right)\right) f(x) g(y) d x d y=
$$

$=\operatorname{Var}(x)+\operatorname{Var}(y)-2 \operatorname{cov}(x, y) \quad$ If you combine two measurements negatively covariance helps
If x and y are uncorrelated $\rightarrow \quad \sigma(x+y)=\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}=\sqrt{\operatorname{Var}(x)+\operatorname{Var}(y)}$
If you subtract two random variables you get the same formula. X can be signal and y background

If the signal plus background is 25 and the background 16 the error in $\mathrm{N}-\mathrm{B}=9$ is about 6
One can easily show that: $\sigma(a x)=a \sqrt{\sigma_{x}^{2}}=a \sqrt{\operatorname{Var}(x)}$
and more general after linearizing: $\quad \sigma(f(\mathbf{x}))=a \sqrt{\left(\frac{\partial f}{x_{1}}\right)^{2} \sigma_{x_{1}}^{2}+\sqrt{\left(\frac{\partial f}{x_{2}}\right)^{2} \sigma_{x_{2}}^{2}}+\ldots+\sqrt{\left(\frac{\partial f}{x_{n}}\right)^{2} \sigma_{x_{n}}^{2}}}$
This is called the error propagation formula

Estimating the DC bias of an AC signal by random sampling require many samples to get a precise result using averaging.

If you realize that voltages are pairwise negatively correlated if the time interval is close to half the period.

If the interval is exactly half the period the correlation is exactly -1 . The variance is then:

$$
\sigma^{2}+\sigma^{2}-2 \sigma^{2}=0
$$

Since:

$$
\operatorname{corr}=\frac{\mathrm{cov}}{\sigma \sigma} ; \mathrm{cov}=\operatorname{corr} \square \sigma \sigma^{2}=-\sigma^{2}
$$

The average of two sample points with half a periods distance is exactly base line.

Multidimensional probability distributions
 The multivariate distribution

If x_{1} and x_{2} are independent and normally distributed, the compound 2-d distribution is given by:

$$
\frac{1}{\sigma_{1} \sqrt{2 \pi}} e^{-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}} \cdot \frac{1}{\sigma_{2} \sqrt{2 \pi}} e^{-\frac{\left(x_{2}-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}=\frac{1}{\sigma_{1} \sigma_{2} 2 \pi} e^{-\frac{1}{\left.-\frac{\left(x_{1}-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}+\frac{\left(x_{2}-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right)}}
$$

This expression can be given in matrix form

$$
\frac{1}{(2 \pi)^{k / 2}|\mathbf{V}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{X}-\mu)^{T} \mathbf{v}^{-1}(\mathbf{X}-\mu)}
$$

where the covariance matrix $\mathbf{V}=\left(\begin{array}{cc}\sigma_{1}^{2} & 0 \\ 0 & \sigma_{2}^{2}\end{array}\right)$ is diagonal

Normality in several dimensions

When measuring independent normal distributed parameters in connection with events 67% are within one standard deviation from the mean and 95% Within 2 standard deviations.

The probability of 10 independent parameters each being within one standard deviation from the mean in is $0.67^{10}=1.8 \%$. The corresponding probability for being within two standard deviations is $0.95^{10}=60 \%$.

Thus when considering several parameters in connection with an event it is probable that some parameters are far from the mean.

Multivariate distributions

$$
\frac{1}{(2 \pi)^{k / 2}|\mathbf{V}|^{1 / 2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^{T} \mathbf{v}^{-1}(\mathbf{x}-\mu)}
$$

If V is not diagonal then x_{1} and x_{2} are correlated $\left(\begin{array}{cc}\sigma_{1}^{2} & \sigma_{12} \\ \sigma_{12} & \sigma_{2}^{2}\end{array}\right)$

The marginal distributions do not tell the whole story

Tests of hypotheses

H0 null-hypothesis- the hypothesis you want to test - e.g. there is a pulse H1 an alternative hypothesis - there was no pulse

Error of the first kind (E1): Erroneous rejection of the null-hypothesis - the pulse was lost, inefficiency
Error of the second kind (E2): Erroneous rejection of the alternate hypothesis - noise

Choose a limit so that $\mathrm{P}(\mathrm{E} 2)$ becomes sufficiently small - below a significance level 5% is common.
In particle physics you demand 5σ for a discovery of a new particle (this corresponds to $\mathrm{P}(\mathrm{E} 1)=0.00003 \%$).
If $\mathrm{P}(\mathrm{E} 2)$ becomes too large improve the data (improve the measurements)
Find a cost function which includes the probabilities and the cost caused by errors
Choose the hypothesis that minimizes the cost function

Why we need to record many events

To determine if our \mathbf{N} new observed events constitute a discovery we must determine if the same data could be produced by combinations of well-known events. The probability for is the background \mathbf{B}.
For \mathbf{N} to be a discovery \mathbf{N} must be significantly larger than \mathbf{B}
For example if \mathbf{N} is 80 and \mathbf{B} is 64 then $\sigma(\mathbf{B})$ is 8 (assume Poisson distribution $\sigma^{2}=\mathrm{N}$)
\mathbf{N} is 2σ above i.e. 2% probability that N is just random noise
If we measure twice as long \mathbf{N} will be 320 , \mathbf{B} is 256 and $\sigma(\mathrm{B})$ is

Normal distribution
Almost the same
as Poisson if $\mathrm{N}>50$
 16 i.e. about 4σ above (0.004% that it is random noise). Much smaller probability that \mathbf{N} is due to random noise but not enough.
$5 \sigma(0.00002 \%$ it is random noise $)$ is required for discovery.

Stochastic processes

A stochastic process is a family (ensemble) of functions

$$
\mathrm{x}(t, S)
$$

depends on time t and the outcome of the experiment ζ (family member)
for each $\mathrm{t}, \mathbf{x}(\mathrm{t}, \zeta)$ is a stochastic variable and
for each $\mathrm{z}, \mathbf{x}(\mathrm{t}, \zeta)$ is an ordinary time function
It is thus a time dependent stochastic variable whose values are described by a multi-ordered probability distribution function:

$$
f\left(x_{1}, t_{1}, x_{2}, t_{2}, \ldots\right)
$$

Examples of stochastic processes

Noise can be expressed as a wiener process

Correlation in stochastic processes

In stochastic processes it is possible to calculate the correlation between the stochastic process at different times. This is called autocorrelation.

If the autocorrelation is localized measurement separated with an interval larger than the width of the autocorrelation function, these values are uncorrelated. If the autocorrelation function is a delta infinitely close data are uncorrelated (clearly unphysical). This is the case of white noise (also unphysical).

If you sample a stochastic process so that the samples are uncorrelated but normal every third sample is more than one standard deviation away from the mean. 5σ is a good criterion if you look at one measurement.

If you have many measurements this reasoning is not valid anymore.
If you have a digital transmission you need a Bit Error Rate (BER), i.e. the probability that noise would corrupt one bit, of the order of or better that 10^{-16}. With 5σ for each sample you would find 2 pulses/second if you sample with 40 MHz .

This argument can be applied to the situation where you look for a pulse in noise or a peak in a noisy spectrum.
This is sometimes called the "Look elsewhere effect"
If a peak could happen in any of n bins you need to improve the 5σ margin with the factor n.

experimental results

The $750 \mathbf{G e V}$ diphoton excess reported by ATLAS and CMS in 2015 disappeared in 2016 data, in the meantime about 500 theoretical studies were made to explain the early results. It never reached the 5σ level but showed promise. There was also a hope to find something new after the Higgs (see

Wikipedia for more information).

From https://physicsworld.com > and-so-to-bed-for-the-750-gev-bump

Literature

My favorite statistic book:

Statistical methods in experimental physics By Frederic James

This book contains everything that is necessary to know in experimental statistic, But it is rather extensive and takes time to read if you want read it thoroughly.
If you don't intend to spend much time on the project there are many other good books on statistics.

