An overview of Quantum Cosmology

F. T. Falciano

3º **Escola PPGFis UERJ - 2020** Rio de Janeiro - RJ

Overview

Quantize gravity and quantum cosmology

General features of quantum gravity

General features of quantum cosmology

Quantum cosmology: applications

Why should quantize gravity?

- ▶ It is not obvious at all... gravity is spacetime
- ► Is quantum nature more fundamental? In which sense?
- Quantum mechanics (QFT) defined on Hilbert space but based on Minkowski S-T
- Notwithstanding, it might be a reasonable idea...

Why should quantize gravity?

- ▶ It is not obvious at all... gravity is spacetime
- ► Is quantum nature more fundamental? In which sense?
- Quantum mechanics (QFT) defined on Hilbert space but based on Minkowski S-T
- Notwithstanding, it might be a reasonable idea...
 - Theoretical unification
 - Source term in GR $(T^{\mu\nu})$ is quantum
 - Black Hole Thermodynamics (entropy) suggests ∃ microstates
 - Singularity theorems of GR
 - Initial conditions in cosmology (what's the I.C. of the universe?)
 - Problem of time (external in QFT, arbitrary in GR)

What means quantum gravity?

- Several approaches
- semiclassical schemes (QFT in curved S-T)
- Supergravity
- String Theory
- Asymptotic safety
- Causal dynamical triangulations
- Noncommutative geometry
- Canonical quantization
 - Quantum geometrodynamics: Wheeler-DeWitt (WDW)
 - Loop quantum gravity (LQG)

Conceptual issues in quantum cosmology

Quantum cosmology is an attempt to take into account quantum effects in models of the universe.

▶ Patching models × the wave function of the universe

Issues to be addressed:

Conceptual issues in quantum cosmology

Quantum cosmology is an attempt to take into account quantum effects in models of the universe.

► Patching models × the wave function of the universe

Issues to be addressed:

- Is quantum mechanics consistent for closed systems? (how happens measurements?)
- Emergence of classical spacetime
 - * WKB approximation peaked about classical spacetimes

nonclassical spacetimes

$$\Psi \approx e^{iS}$$

$$\Psi \approx e^{-I}$$

- * decoherence to avoid quantum interference
- ► How to define probability (WDW is not positive similar to KG)
- Singularity avoidance depends on the interpretation of quantum mechanics

Minisuperspace is quantum cosmology for the FLRW universe.

Cosmological Standard Model

BPF ANOS NO SINALERRO DE PESCULTAS FÍSICAS RES CRICAS, NOCIDAS, ANOÇAS E CONSINCIPÁS

General Properties

- ▶ homogeneous and isotropic > 200 Mpc
- exist for at least 13, 7 billions of years
- Expanding: denser and hotter in the past
- ▶ 3 eras: radiation / dust / dark energy

$$T \sim 0.25 \, eV - 1 \, eV - 50 \, KeV - 0.5 \, MeV$$

 $T \sim 1 \, MeV$ [0.2 sec] neutrino decoupling

 $T \sim 200 \, MeV \, \left[10^{-5} sec \right]$ baryogenesis

 $T \sim 100 \, GeV - 10 \, TeV \, \left[10^{-10} - 10^{-14} sec \right]$ particle Standard Model still valid

 $T \sim 10 \, TeV - 10^{19} \, GeV \left[10^{-14} - 10^{-44} sec \right]$ beyond SM but still classical gravity

 $T > 10^{19} GeV$ what comes next?

General features of quantum gravity

Gauge theories as constrained systems

- more dynamical variables than physical degrees of freedom
- Covariant form of Electromagnetism: $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu}$

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -B_z & B_y \\ E_y & B_z & 0 & -B_x \\ E_z & -B_y & B_x & 0 \end{pmatrix}$$

► In Flat S-T, the symmetry group is given by the Poincaré group

$$\vec{E}' = \gamma \left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B} \right) - \frac{\gamma^2}{\gamma + 1} \left(\frac{\vec{v} \cdot \vec{E}}{c} \right) \frac{\vec{v}}{c}$$

$$\vec{B}' = \gamma \left(\vec{B} - \frac{\vec{v}}{c} \times \vec{E} \right) - \frac{\gamma^2}{\gamma + 1} \left(\frac{\vec{v} \cdot \vec{B}}{c} \right) \frac{\vec{v}}{c}$$

- gauge transformation: $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} \Lambda(x)$ but $F_{\mu\nu} \rightarrow F_{\mu\nu}$
- what's an observable? (deterministic dynamics)

Constrained Dynamical Systems

Lagrangian system $S = \int dt L(\vec{q}, \dot{\vec{q}})$ i = 1, ..., n

Euler-Lagrange:
$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}^i} \right) - \frac{\partial L}{\partial q^i} = 0 \implies \mathbf{W} \cdot \ddot{\vec{q}} = \vec{V}$$
with
$$W_{ik} \left(\vec{q}, \dot{\vec{q}} \right) \equiv \frac{\partial^2 L}{\partial \dot{q}^k \partial \dot{q}^i} \qquad V_i \left(\vec{q}, \dot{\vec{q}} \right) \equiv \frac{\partial L}{\partial q^i} - \frac{\partial^2 L}{\partial q^k \partial \dot{q}^i} \dot{q}^k$$

If exists W^{-1} ,

$$\ddot{\vec{q}} = \mathbf{W}^{-1} \cdot \vec{V} \implies \ddot{q}_k = \ddot{q}_k \left(\vec{q}, \dot{\vec{q}} \right)$$

regular systems

If $\det \mathbf{W} = 0$,

$$\ddot{\vec{q}} \left\{ \begin{array}{l} \text{cannot be described by } \left(\vec{q}, \dot{\vec{q}}\right) \\ \text{evolution is not univocally determined} \end{array} \right\} \quad \text{singular systems}$$

Hamiltonian for Constrained Systems

Legendre transformation defines the momenta

$$p_k \equiv \frac{\partial L}{\partial \dot{q}^k} \left(\vec{q} \,, \dot{\vec{q}} \right)$$

- ► Main issue.... cannot invert the acceleration in terms of $\ddot{\vec{q}} = \ddot{\vec{q}} (\vec{q}, \vec{p})$
- let assume all m constraints are independent

$$\phi_j(\vec{q}, \dot{\vec{q}}) \approx 0$$
 primary constraints

- ► $H(\vec{q}, \vec{p}) = \vec{p} \cdot \dot{\vec{q}} L(\vec{q}, \dot{\vec{q}})$ assumes E-L eq.'s
- Need to extend the Hamiltonian

$$H_T \equiv H + \sum_j \mathscr{U}^j \phi_j$$

 \mathcal{U}^k are arbitrary functions of (q^k, p_i)

GR Hamiltonian Formalism

- ► It is a constrained hamiltonian system

 Symmetry group identified with the covariance group: MM9
- Einstein equation has no evolutionary parameter

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} \quad \Rightarrow \quad g_{\mu\nu} \left(x^0, x^1, x^2, x^3 \right)$$

Basic variables:

- Arnowitt-Deser-Misner (ADM) formalism: Geometrodynamics The tri-metric h_{ii} is the dynamic variable
- Loop quantum gravity: The densitized triads E_i^a and connection $A_i^a = \Gamma_i^a + \gamma K_i^a$

ADM Formalism

► Suppose a topology $R \otimes \Sigma^3$, hence \exists time-like congruence \vec{e}_0 The subspace Σ can be expanded by $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$

$$\vec{e}_{\mu} \cdot \vec{e}_{\nu} \equiv g\left(\vec{e}_{\mu}, \vec{e}_{\nu}\right) = \eta_{\mu\nu}$$

• Given an arbitrary (t, x^i) , the vector $\vec{t} = \frac{\partial}{\partial t} = N \vec{e}_0 + N^k \vec{e}_k$

Projecting the metric

$$\begin{array}{l} h_{ij} \equiv g_{\alpha\beta} \; e^{\alpha}{}_i \; e^{\beta}{}_j \\ g_{0i} \equiv g_{\alpha\beta} \; t^{\alpha} \; e^{\beta}{}_i = N^a \; h_{ai} = N_i \\ g_{00} \equiv g_{\alpha\beta} \; t^{\alpha} \; t^{\beta} = N^2 - N^a N_a \end{array} \qquad g_{\mu\nu} = \left(\begin{array}{cc} N^2 - N^a N_a & -N_i \\ -N_j & -h_{ij} \end{array} \right)$$

• how h_{ii} is immersed: extrinsic curvature

$$K_{\mu\nu} \doteq -\frac{1}{2} \perp_{\alpha\mu} \perp_{\nu}^{\beta} \nabla_{(\beta} e^{\alpha}_{0)} = -\frac{1}{2} \perp_{\mu}^{\alpha} \perp_{\nu}^{\beta} \mathcal{L}_{\vec{e}_{0}} \left(g_{\alpha\beta} \right)$$

$$K_{ab} = -N \Gamma_{ab}^{0} \qquad K_{0b} = N^{a} K_{ab} \qquad K_{00} = N^{a} N^{b} K_{ab}$$

ADM Formalism

► The action reads

$$S = \int d^4x \ \sqrt{-g} \ R = \int dt d^3x \ N \sqrt{h} \left(K^{ij} K_{ij} - K^2 + {}^{(3)} R \right)$$

Equations of motion

$$\frac{\delta S}{\delta N} = 0 \Rightarrow \sqrt{h} \left(K^{ij} K_{ij} - K^2 - {}^{(3)} R \right) = 0 \qquad G_{\mu\nu} t^{\mu} t^{\nu} = 0$$

$$\frac{\delta S}{\delta N_i} = 0 \Rightarrow 2 \sqrt{h} \nabla_j \left(K_i{}^j - \delta_i{}^j K \right) = 0 \qquad G_{\mu\nu} t^{\mu} \bot^{\nu}{}_{\alpha} = 0$$

$$\begin{split} \frac{\delta S}{\delta h_{ij}} &= 0 \Rightarrow & G_{\mu\nu} \perp^{\mu}{}_{\beta} \perp^{\nu}{}_{\alpha} = 0 \\ \Rightarrow & \dot{K}_{ij} &= -N \left[{}^{(3)}R_{ij} + KK_{ij} - 2K_{i}^{m}K_{mj} \right] + \nabla_{j}\nabla_{i}N - \nabla_{(i}N^{m}K_{j)m} - N^{m}\nabla_{m}\nabla_{j}K_{i} \end{split}$$

ADM Formalism

▶ The momenta

$$P = \frac{\partial \mathcal{L}}{\partial \dot{N}} = 0 \quad , \quad P^i = \frac{\partial \mathcal{L}}{\partial \dot{N}_i} = 0 \quad , \quad \Pi^{ij} = \frac{\partial \mathcal{L}}{\partial \dot{h}_{ij}} = -\sqrt{h} \left(K^{ij} - h^{ij} K \right)$$

► The total hamiltonian

$$\mathcal{H}_{T} = \int dt \, d^{3}x \left(N \,\mathcal{H}_{0} + N_{i} \,\mathcal{H}^{i} + \lambda \, P + \lambda_{i} \, P^{i} \right)$$

$$\mathcal{H}_{0} = G_{ijkl} \, \Pi^{ij} \, \Pi^{kl} - {}^{(3)}R \, \sqrt{h} \qquad \text{(super-hamiltoniana)}$$

$$\mathcal{H}^{i} = -2\nabla_{j} \, \Pi^{ij} \qquad \text{(super-momentum)}$$

$$G_{ijkl} = \frac{1}{2\sqrt{h}} \left(h_{ik} h_{jl} + h_{il} h_{jk} - h_{ij} h_{kl} \right)$$

Preservation of constraints

$$\dot{P} \approx 0 \quad \Rightarrow \quad \mathcal{H}_0 \approx 0 \qquad \qquad \dot{P}^i \approx 0 \quad \Rightarrow \quad \mathcal{H}^i \approx 0$$

Dynamics

$$\dot{N} = \lambda$$
 $\dot{N}^i = \lambda^i$ $\dot{h}_{ii} = \dots$ $\dot{\Pi}_{ij} = \dots$

Quantizing Constrained Systems

Non-relativistic dynamics reads

$$i\hbar \frac{\partial}{\partial t} \psi(x,t) = H(\hat{q},\hat{p}) \psi(x,t)$$

- ► Canonical quantization: dynamical variable → operator
- Poisson brackets goes to commutation relations

$$[\hat{q},\hat{p}]=i\hbar$$

We cannot translate the constraints as relations for operators

Example:
$$\phi(q,p) = p \longrightarrow \phi(\hat{q},\hat{p}) = 0 \implies \hat{p} = 0$$

But

$$[\hat{q}, \hat{p}] = i\hbar = \hat{q}\hat{p} - \hat{p}\hat{q} = 0$$
 \Rightarrow $i\hbar = 0!$ inconsistency

Constraints restricts the possible physical states, hence

 $\phi(\hat{q},\hat{p})\psi = 0 \qquad \text{mus}$

must annihilate the wave function

General features of quantum cosmology

Quantum Cosmology

There are a few issues....

- ▶ What is the meaning to quantize spacetime?
- ► The problem of time in quantum gravity

$$i\hbar \frac{\delta}{\delta \tau} \Psi(\varphi, A_{\mu}, h_{\mu\nu}) = \hat{H} \Psi(\varphi, A_{\mu}, h_{\mu\nu}) = 0$$
 no evolution?

Quantum cosmology issues....

- ▶ Scale factor is defined in the half-line \mathbb{R}^+
- ► How to make predictions? (Interpretations of quantum mechanics)

Quantization on the half-line

- ▶ The scale factor is defined on the half-line $a \in (0, \infty)$
- ► Thus, operators generically are no longer self-adjoint
- ► The most important example: unitary evolution requires self-adjoint hamiltonians
- We need to impose boundary conditions.... example $\hat{H} = \hat{P}_a^2 + k\hat{a}^2$

Interpretations of Quantum Mechanics

- Copenhagen interpretation doesn't work for cosmology (cannot be applied!)
- Many-worlds interpretation
- Consistent histories interpretation
- Bohm-De Broglie Interpretation

Quantum cosmology: applications

- ► Ashtekar *et.al* claim WDW is singular (Prob. = 1)
- ► Free Scalar Field using Consistent History Craig and Singh

- ► Ashtekar *et.al* claim WDW is singular (Prob. = 1)
- ► Free Scalar Field using Consistent History Craig and Singh
- ► Change of variables: $\alpha \equiv \log a$

WdW eq.
$$\pm i\partial_{\phi}\Psi(\alpha.\phi) = \sqrt{\hat{\Theta}} \Psi(\alpha,\phi)$$
 with $\Theta := -\frac{4\pi G}{3}\partial_{\alpha}^{2}$

- ► Only positive frequency sector, evolution reads $U(\phi \phi_0) = e^{i\sqrt{\Theta}(\phi \phi_0)}$
- ► The probability for a bounce is

$$p(h_{B-B}) = \left|\left|C_{B-B}^{\dagger}\right|\Psi\rangle\right|^2 = \lim_{\phi \to \infty} \langle \Psi_L | P_{\overline{\Delta}\alpha_2}\left(\phi\right) |\Psi_L\rangle = 0$$

- ► For two times, every solution is singular
- ► Three times there is no decoherence (nothing can be said!)

- Wheeler-DeWitt Quantization can Solve the Singularity Problem N. Pinto-Neto, etal. - PRD 86 (2012) 063504.
- ► The de Broglie-Bohm theory applied to quantum cosmology

- Wheeler-DeWitt Quantization can Solve the Singularity Problem N. Pinto-Neto, etal. - PRD 86 (2012) 063504.
- ► The de Broglie-Bohm theory applied to quantum cosmology
- but there is no continuity equation

$$\begin{split} &\frac{\partial}{\partial \phi} \left(R^2 \frac{\partial S}{\partial \phi} \right) - \frac{\partial}{\partial \alpha} \left(R^2 \frac{\partial S}{\partial \alpha} \right) \\ &\neq \frac{\partial R^2}{\partial \phi} - \frac{\partial}{\partial \alpha} \left(R^2 \frac{\mathrm{d}\alpha}{\mathrm{d}\phi} \right) \end{split}$$

no probability for bohmian trajectories

Concluding remarks

- Consistent histories: have probabilities but unable to investigate singularity for more than two times.
- de Broglie-Bohm: know the entire evolution, but looses probability

Connecting with observations

Testing Primordial Universe (Observations)

- ▶ While waiting for primordial gravitational waves....
- ▶ The farthest observable is the CMB

► Three main observables:

scalar spectral index tensor-to-scalar ratio non-gaussianity

$$n_s = \frac{\mathrm{d} \log \mathrm{P}_{\mathcal{R}}}{\mathrm{d} \log k}$$

$$r = \frac{P_{\mathcal{R}}}{P_{\mathcal{T}}}$$

$$f_{NL}$$

but there is also

B-mode polarization, tensor spectral index, running, etc...

Testing Primordial Universe (Observations)

Connection with observations¹: Correlation functions

two point
$$\langle \zeta^*(\vec{k}_1) \zeta(\vec{k}_2) \rangle = \frac{(2\pi)^2}{k^3} \delta(\vec{k}_1 - \vec{k}_2) P_{\zeta}(k_1)$$

bispectrum
$$\langle \zeta(\vec{k}_1)\zeta(\vec{k}_2)\zeta(\vec{k}_3)\rangle = (2\pi)^7 \delta\left(\vec{k}_1 + \vec{k}_2 + \vec{k}_3\right) \frac{P_{\zeta}^2}{\prod k_i^3} \mathscr{A}\left(\vec{k}_1, \vec{k}_2, \vec{k}_3\right)$$

Power spectrum parametrization

$$P_{\mathscr{R}} = A_s \left(\frac{k}{k_*}\right)^{n_s - 1} \qquad n_s - 1 = \frac{d \ln P_{\mathscr{R}}}{d \ln k}$$

$$P_{\mathscr{T}} = A_t \left(\frac{k}{k_*}\right)^{n_t} \qquad k_* = 0.05 \text{Mpc}^{-1}$$

► Tensor-to-scalar ratio

$$r \equiv \frac{\mathbf{P}_{\mathcal{T}}}{\mathbf{P}} \qquad k_* = 0.002 \mathrm{Mpc}^{-1}$$

$$n_s = 0.9649 \pm 0.0042$$
, $r_{0.002} < 0.064$

¹Planck 2018 results. X. Constraints on inflation arXiv:1807.06211v1 [astro-ph.CO] Planck2018 results. VI. Cosmological parameters arXiv:1807.06209v1 [astro-ph.CO]

Primordial Universe Alternatives

Shortcomings of the Standard Model

- physical mechanism to produce the expansion
- matter / anti-matter asymmetry
- cosmic singularity in a finite past time
- particle horizon
- flatness of spatial sections
- initial condition for structure formation

Inflation accelerated expansion phase

Bounce contraction → expansion

Distinguishing Primordial Scenarios

Quasimatter Bounce Equivalent to Starobinsky Inflation

L. F. Guimarães, F. T. Falciano, G. Brando

Physical Review D 99, 103515 (2019) ArXiv:1902.05031 [gr-qc]

Mimicking Starobinsky Inflation

What's the embedding dynamics?

- ► GR with perfect fluid / scalar field / ...
- ► F(R) without matter content / with conventional matter / ...
- Collapsing with scalar field: $z_s^B = a_B \dot{\varphi}/H$
- Quasi-de Sitter should be mapped into a quasi-matter dominated universe

Quantum Bounce

 Quantum mechanisms: Wheeler-deWitt, Superstring motivated (Ekpyrotic), LQC

► Starobinsky Inflation

$$n_s - 1 = -\frac{2}{N}$$
 , $r = \frac{12}{N^2}$ \Rightarrow $r = 3 (n_s - 1)^2$

Consistency (single field slow-roll): $n_t = -r/8 \implies n_t = -\frac{3}{8} (n_s - 1)^2$

Our model

$$n_s - 1 = -2\epsilon_c$$
, $n_t = -2\epsilon_c$, $r = \frac{8}{3}\epsilon_c^2$ \Rightarrow $r = \frac{2}{3}(n_s - 1)^2$

▶ we are a factor 2/9 smaller!

Convolution of two contributions

The mapping: inflation → bounce

The bounce

Starobinsky:
$$(z_s/z_T)^2 = \frac{Q_s}{F} \approx \frac{3}{2} M_{\rm Pl}^2 \epsilon_c^2$$

matter bounce:
$$(z_s/z_T)^2 = 3M_{\rm Pl}^2$$

extra factor of $\epsilon_c^2/9$

This gives a factor $2/\epsilon_c^2$

Thanks for your attention!