FCC Analyses and RDataFrame
From the past (Heppy) to the future (EDM4hep)

Valentin Volkl for the FCC Software Group
Univ. Innsbruck / CERN

Future Circular Collider Design Study

Stucy noundary

Special Topics

| based on
e 150 TB of full simulation data
e 100 TB of Delphes events
produced with Gaudi-based framework FCCSW

Pressipx

https://cern.ch/fcc-cdr

FCC-hh(ee) Framework

1.

Fully integrated analysis chain
Links between various steps

—

GridPack producer
Makes MG5_aMC@NLO GridPacks, need to understand if other GEN can do it

LHE Producer

Produce LHE files on condor queues, either from step 1) or on the fly. Need a detailed
review of the possibilities offered by other GEN (this has started as we have just seen)

FCCSW

Runs Pythia8 parton shower+hadronisation and Delphes with FCC detector
http://fcc-physics-events.web.cern.ch/fcc-physics-events/Delphesevents_fccee_v01.php
Also need to support later other parton showers

Analysis pre-selection
Python framework produces flat ROOT trees

Analysis final selection

Python framework for optimising analysis cut flows and producing

Creates a database of LHE events

Creates a database of FCC events
—

Use the events in the database
to produce analyses templates

Use the events produced at pre-
selection to create stacked plots

Final analyses (custom, but we have limit setting tool for instance) -

Clement Helsens, FCCSW workshop Oct 2019

FCC-hh(ee) Framework |meiaa s

fcc-physics-events.web.cern.ch

Home About Contact 100TeV FCC Physics 27TeV HE-LHC Physics Full Simulation FCChh FCCee Physics Stat

Delphes FCC Physic events v0.2

q Search for names..

NWEIGHTS NFILES OUTPUT PATH MAIN PROCESS
1 mgp8 pp hh lambda096 5f htautau 980,000 0 08 1 99 45.63 5?35’3’5‘;7,2;“;g‘;‘;ﬁ{ﬁ“{ii’iﬂ?éﬁ’é”?ﬁﬁ?ﬁiﬁf e EIH= g's))ebb' Houndes 1.47359
2 mgp8 pp hh lambda097 5f htautau 1,000,000 0 100 0 100 46.55 ﬁgj’s’ég‘;gg;g‘;f;ﬂh{g;‘ﬁ’ :ég’;“gfﬁ‘;ﬁgﬁms T Db 1.46105
3 mgp8 pp hh lambda098 5f htautau 990,000 0 90 0 99 46.13 ﬁfﬂs’égz‘:g;g‘;‘;Cﬂh{gi’l‘;’:g;g”?fﬁ‘;ﬁif“‘s HEL H=PboH gndec. 1.45039
legs/experimentitec/iygeneration/Delgheskvents Hi H>bb Hundec
' . Use the events in the database
Analysis pre-selection to produce analyses templates
Python framework produces flat ROOT trees
Analysis final selection Use the events produced at pre-
Python framework for optimising analysis cut flows and producing selection to create stacked plots

Final analyses (custom, but we have limit setting tool for instance)

Clement Helsens, FCCSW workshop Oct 2019

FCC-hh(ee) Framework

1. GridPack producer

Fully integrated analysis chain
Links between various steps

~

Delphes FCC Physic events v0.2

Q
)) Use the events in the database
4. Analysis pre-selection to produce analyses templates
* Python framework produces flat ROOT trees
3. Analysis final selection Use the events produced at pre-
* Python framework for optimising analysis cut flows and producing selection to create stacked plots
6. Final analyses (custom, but we have limit setting tool for instance) -

Clement Helsens, FCCSW workshop Oct 2019

HEPPY

See Colin's Talk giving a
general overview

Heppy

particles

e

jets

Jet Producer

jets
—__ " JetCalibration —
Corr jets

Corr jets
OIS,

—_—

Ouput

colin.bernet@cern.ch

Input can be anything:
- Event or collection (e.g. jets)
- Any format (backends):
- CMS, ILC, plain root, text, ...
- Noinput (generator mode) possible

Analyzers:
- Fast & easy to write
- Can drive C++ (here fastjet)

Objects:
- Added to the event or modified in place
- Generic runtime dataformats provided

Generic Analyzers:
- Extremely flexible

Output:

- Event or collection (e.g. jets)

- Ntuples, histograms, ndarrays, text,
database entries, ... 3

https://indico.cern.ch/event/789007/contributions/3317130/attachments/1795203/2926133/colin_bernet_heppy_hsf_analysis_180213_final.pdf

Problems: Performance and Maintainance

e Original Authors no longer around
e Pure Python Loop = Slow! Using tth_4l analysis as a test case:

~/$ heppy_loop.py output analysis.py
event 100 (17.8 ev/s)
event 200 (21.9 ev/s)
event 300 (24.6 ev/s)
event 400 (26.1 ev/s)

https://github.com/vvolkl/FCChhAnalyses/tree/master/FCChhAnalyses/FCChh/tth_4l

Problems: Performance and Maintainance

e C(lear that event loop needs to be moved to C++.
o Coincided with first RDataFrame implementations
o Spent last summer rewriting one analysis

e Speedup of 30x (S for one file on eos containing
7000 events)

e Not yet running with MultiThreading

def process(self, event):
sqrts = self.cfg_ana.sqrts
to_remove = getattr(event, self.cfg_ana.to_remove)
recoil_p4 = TLorentzVector(0, 0, 0, sqrts)
for ptc in to_remove:
recoil_p4 —-= ptc.p4()
recoil = Recoil(0, 0, recoil_p4, 1)
setattr(event, self.cfg_ana.output, recoil)

RDataframe:

struct recoil {

recoil(float arg_sqrts) : m_sqrts(arg_sqrts) {};
float m_sqrts = 240.0;
std::vector<fcc::ParticleData> operator()

(std::vector<fcc::ParticleData> 1in) {

+s

std::vector<fcc::ParticleData> result;
auto recoil_p4 = TLorentzVector (0, 0, 0, m_sqrts);
for (auto & vl: 1in) {

TLorentzVector tvil;

tvl.SetXYZM(;

recoil_p4 -= tvl;

auto recoil_fcc = fcc::ParticleData();
recoil_fcc.core.p4.px = recoil_p4.Px();
recoil_fcc.core.p4.py = recoil_p4.Py();
recoil_fcc.core.p4.pz recoil_p4.Pz();
recoil_fcc.core.p4.mass = recoil_p4.M();
result.push_back(recoil_fcc);

return result;

Changing the Heppy “backend”

e Heppy seems to have found a nice “syntax” for the analyses though
o That and the sheer number of analyses to port cited as arguments against dataframe

e Started to investigate if configuration files can be kept
e fccflatprod

sys.modules["heppy"] = __import__("fccflatprod")

e FEach analyzer then maps to one Define

10

https://github.com/vvolkl/fccflatprod

Changing the Heppy “backend”

e Heppy seems to have found a nice “syntax” for the analyses though
o That and the sheer number of analyses to port cited as arguments against dataframe

e Started to investigate if configuration files can be kept
e fccflatprod

sys.modules["heppy"] = __import__("fccflatprod")

Main issues:

e Python lambdas in filters
e heppy idiosyncracies in I/O
e Analyzers that modify data in place

"

https://github.com/vvolkl/fccflatprod

EDM4HEP

e [Effortto converge to common datamodel for Future Collider Communities
(CLIC/ILC, FCC and CEPC, and wider community where usefull)

e HSF Project
o https:/github.com/HSF/EDM4HEP

e Content close to more mature LCIO edm
o Already ported to podio (“plcio”) by Frank Gaede

e Rapidly approaching first prototype
e FCC will certainly migrate as soon as possible

12

https://github.com/HSF/EDM4HEP

Implementation Podio

fees s Track:

Members:
- float chi2 // from track fit
- unsigned ndf //
- unsigned bits // stores flags

OneToManyRelations
- fcc::PositionedTrackHit hits
- fcc::TrackState states

/

class TrackData {

public:

float chi2; ///< chi2

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

+s

ndf; ///

bits; ///< Stores flags
int hits_begin;

int hits_end;

int states_begin;

int states_end;

13

Implementation: PODIO

class TrackData {

fee: s Track: f
class TrackObj : public podio::0ObjBase {

Members:
- float chi2 // from track fit class ConstTrack {
B unsigned ndf // \\\\‘ i class TrackCollection : public

a2 o

- unsigned bits stores flags
g // g class Track:

OneToManyRelations

- fcc::PositionedTrackHit hits

L] | .| public:
/// Access the chi2 returned by the track fit
— const float& chi2() const;

- fcc::TrackState states

—

L | private:
TrackObj* m_obj;

14

Plans for the Future

e Working with the Plain Old Data is sufficient for basically all of the current FCC
usecases for heppy

e Constructing a DataFrame from the plain root file is a feature

e Could distribute a library + dictionary of lambdas replacing analyzers

e Investigating Bamboo

15

