
FCC Analyses and RDataFrame
From the past (Heppy) to the future (EDM4hep)

PPP Developers Meeting October 2019 Oct 17, 2019
Valentin Volkl for the FCC Software Group

Univ. Innsbruck / CERN

Future Circular Collider Design Study

2

Conceptual Design Report based on
● 150 TB of full simulation data
● 100 TB of Delphes events

produced with Gaudi-based framework FCCSW

https://cern.ch/fcc-cdr

3Clement Helsens, FCCSW workshop Oct 2019

4Clement Helsens, FCCSW workshop Oct 2019

fcc-physics-events.web.cern.ch

5Clement Helsens, FCCSW workshop Oct 2019

HEPPY

● See Colin's Talk giving a
general overview

6

https://indico.cern.ch/event/789007/contributions/3317130/attachments/1795203/2926133/colin_bernet_heppy_hsf_analysis_180213_final.pdf

Problems: Performance and Maintainance

● Original Authors no longer around
● Pure Python Loop → Slow! Using tth_4l analysis as a test case:

~/$ heppy_loop.py output analysis.py
event 100 (17.8 ev/s)
event 200 (21.9 ev/s)
event 300 (24.6 ev/s)
event 400 (26.1 ev/s)
….

7

https://github.com/vvolkl/FCChhAnalyses/tree/master/FCChhAnalyses/FCChh/tth_4l

Problems: Performance and Maintainance

● Clear that event loop needs to be moved to C++.
○ Coincided with first RDataFrame implementations
○ Spent last summer rewriting one analysis

● Speedup of 30x (6 seconds vs 3 minutes for one file on eos containing
7000 events)

● Not yet running with MultiThreading

8

HEPPY:

 def process(self, event):
 sqrts = self.cfg_ana.sqrts
 to_remove = getattr(event, self.cfg_ana.to_remove)
 recoil_p4 = TLorentzVector(0, 0, 0, sqrts)
 for ptc in to_remove:
 recoil_p4 -= ptc.p4()
 recoil = Recoil(0, 0, recoil_p4, 1)
 setattr(event, self.cfg_ana.output, recoil)

9

RDataframe:

struct recoil {
 recoil(float arg_sqrts) : m_sqrts(arg_sqrts) {};
 float m_sqrts = 240.0;
 std::vector<fcc::ParticleData> operator()
(std::vector<fcc::ParticleData> in) {
 std::vector<fcc::ParticleData> result;
 auto recoil_p4 = TLorentzVector(0, 0, 0, m_sqrts);
 for (auto & v1: in) {
 TLorentzVector tv1;
 tv1.SetXYZM(;
 recoil_p4 -= tv1;
 }
 auto recoil_fcc = fcc::ParticleData();
 recoil_fcc.core.p4.px = recoil_p4.Px();
 recoil_fcc.core.p4.py = recoil_p4.Py();
 recoil_fcc.core.p4.pz = recoil_p4.Pz();
 recoil_fcc.core.p4.mass = recoil_p4.M();
 result.push_back(recoil_fcc);
 return result;
 }
};

Changing the Heppy “backend”

● Heppy seems to have found a nice “syntax” for the analyses though
○ That and the sheer number of analyses to port cited as arguments against dataframe

● Started to investigate if configuration files can be kept
● fccflatprod

● Each analyzer then maps to one Define

10

sys.modules["heppy"] = __import__("fccflatprod")

https://github.com/vvolkl/fccflatprod

Changing the Heppy “backend”

● Heppy seems to have found a nice “syntax” for the analyses though
○ That and the sheer number of analyses to port cited as arguments against dataframe

● Started to investigate if configuration files can be kept
● fccflatprod

Main issues:

● Python lambdas in filters
● heppy idiosyncracies in I/O
● Analyzers that modify data in place

11

sys.modules["heppy"] = __import__("fccflatprod")

https://github.com/vvolkl/fccflatprod

EDM4HEP

● Effort to converge to common datamodel for Future Collider Communities
(CLIC/ILC, FCC and CEPC, and wider community where useful!)

● HSF Project
○ https://github.com/HSF/EDM4HEP

● Content close to more mature LCIO edm
○ Already ported to podio (“plcio”) by Frank Gaede

● Rapidly approaching first prototype
● FCC will certainly migrate as soon as possible

12

https://github.com/HSF/EDM4HEP

 Implementation Podio

13

class TrackData {
public:
 float chi2; ///< chi2
 unsigned ndf; ///
 unsigned bits; ///< Stores flags
 unsigned int hits_begin;
 unsigned int hits_end;
 unsigned int states_begin;
 unsigned int states_end;
};

Implementation: PODIO

14

class TrackData {
public:
 float chi2; ///< chi2
 unsigned ndf; ///
 unsigned bits; ///< Stores flags
 unsigned int hits_begin;
 unsigned int hits_end;
 unsigned int states_begin;
 unsigned int states_end;
};

class TrackObj : public podio::ObjBase {
...
 public:
 TrackData data;
 std::vector<::fcc::ConstPositionedTrackHit>* m_hits;
 std::vector<::fcc::ConstTrackState>* m_states;
...
}

class ConstTrack {
...
private:
 TrackObj* m_obj;
...
};

class TrackCollection : public
podio::CollectionBase
…
private:
 std::vector<TrackData> * m_data;
…
}

class Track:
…

public:
/// Access the chi2 returned by the track fit
 const float& chi2() const;
…
private:
 TrackObj* m_obj;
...

Plans for the Future

● Working with the Plain Old Data is sufficient for basically all of the current FCC
usecases for heppy

● Constructing a DataFrame from the plain root file is a feature
● Could distribute a library + dictionary of lambdas replacing analyzers
● Investigating Bamboo

15

