# Probing intruder configurations in <sup>188</sup>Pb nuclei using Coulomb excitation

Following Proposal to the ISOLDE and Neutron Time-of-Flight Committee IS494 and HIE-ISOLDE Letters of Intent I-107 and I-110

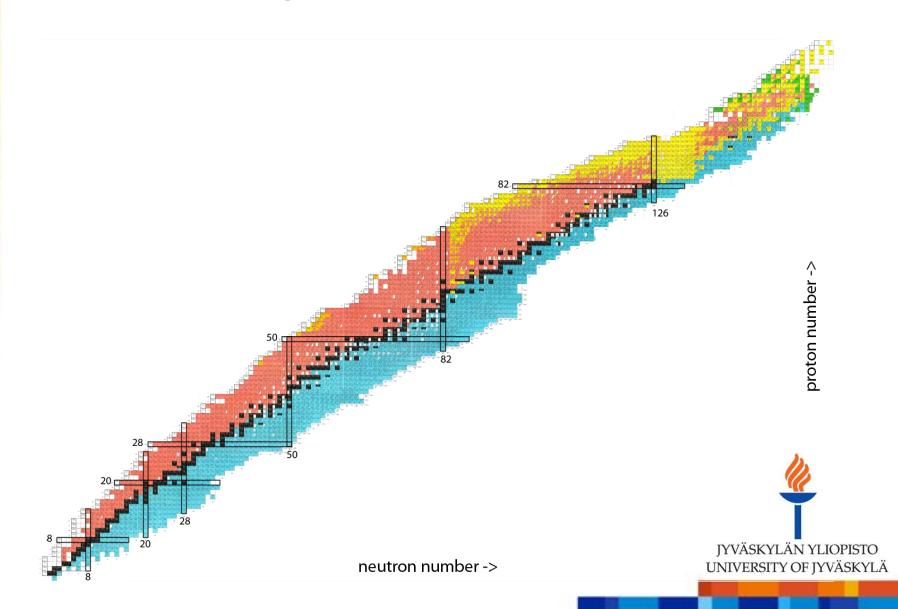
INTC meeting at CERN 6.11.2019
Janne Pakarinen, JYFL, Finland



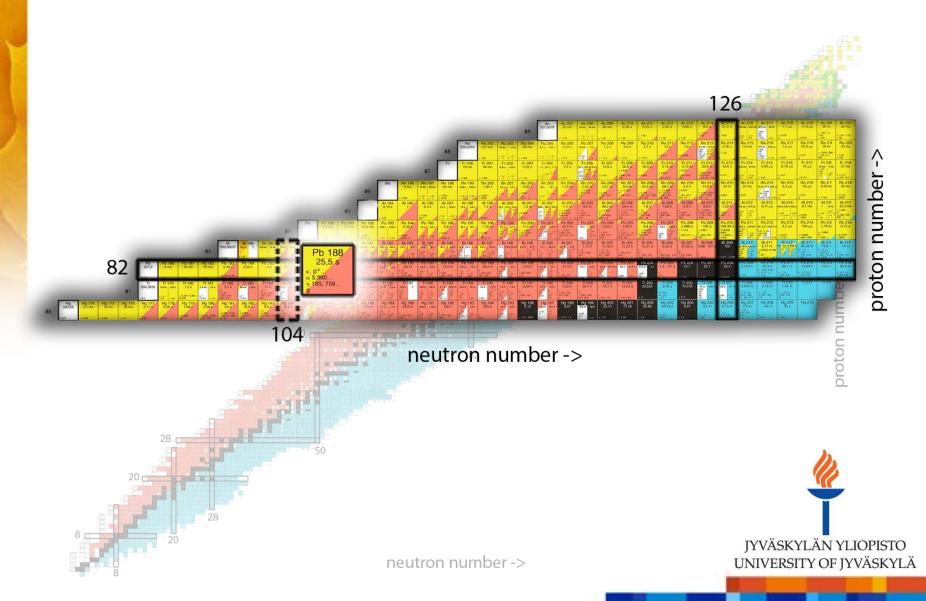
#### Status of IS566 – relevant facts

- Physics case still valid
- HIE-ISOLDE still the only facility where this experiment can be conducted
- SPEDE commissioned in-beam and exploited at IDS
- ♦ Complementary <sup>188</sup>Pb SAGE data to be published

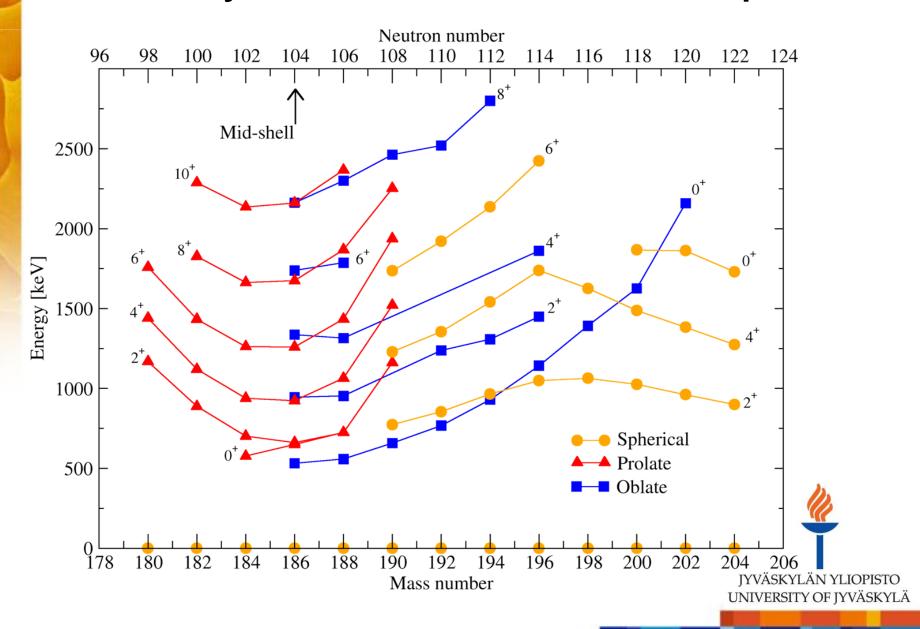
UNIVERSITY OF IYVÄSKYLÄ


#### **Outline**

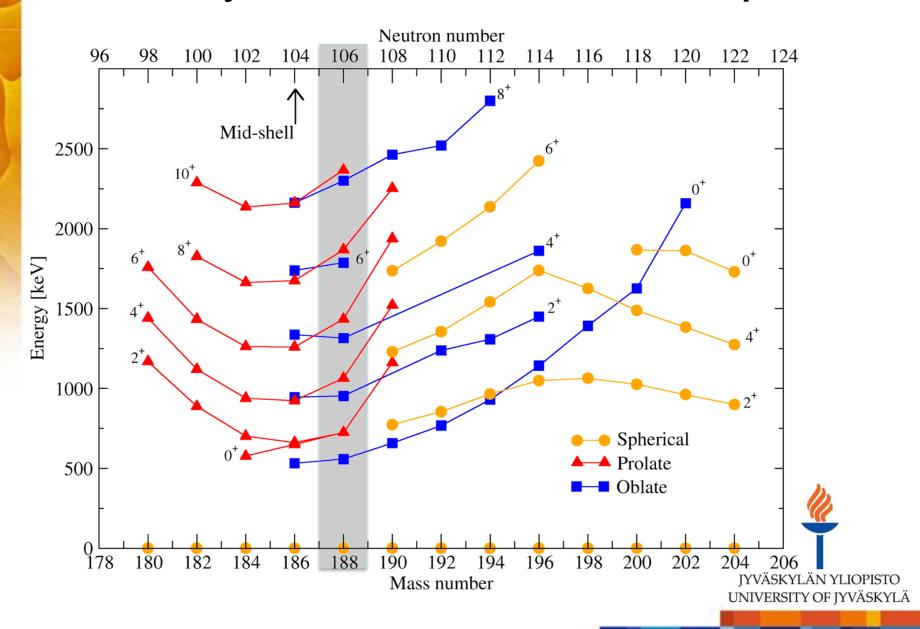
1) Physics background and motivation


2) Experiment description

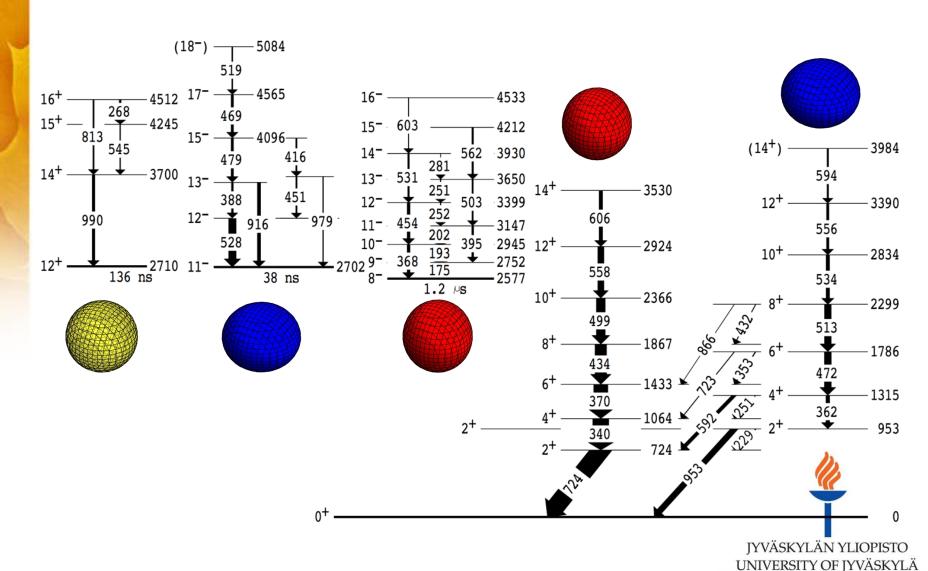



### Chart of Nuclei

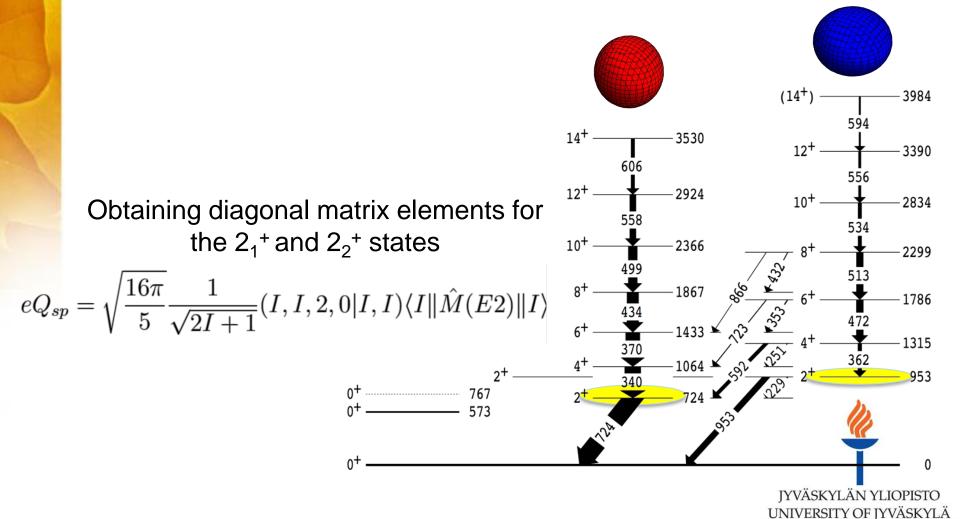



#### Chart of Nuclei




### Level systematics of Pb isotopes




### Level systematics of Pb isotopes



### <sup>188</sup>Pb level scheme

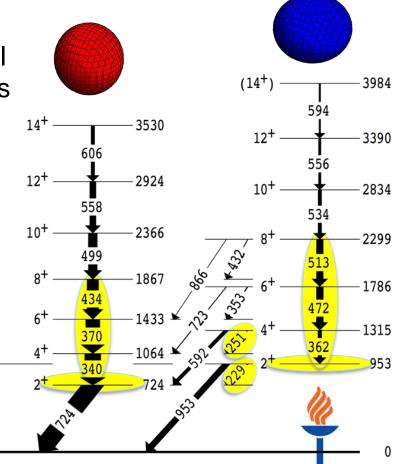


## Objectives of present work - 1 direct measurement of shapes



## Objectives of present work - 2 collectivity of bands

Measuring transitional matrix elements for transitions on top of the 2+ states 
$$B(E2,J_i\rightarrow J_f)=\frac{1}{2J_i+1}|\langle J_f||\mathbf{E2}||J_i\rangle|^2$$


JYVÄSKYLÄN YLIOPISTO UNIVERSITY OF JYVÄSKYLÄ

## Objectives of present work - 3 measurement of the E0 transitions

#### Confirm recent SAGE results:

1) Long-standing issue of the level energies of the excited 0+ states

Directly measure the E0 components of the inter-band transitions



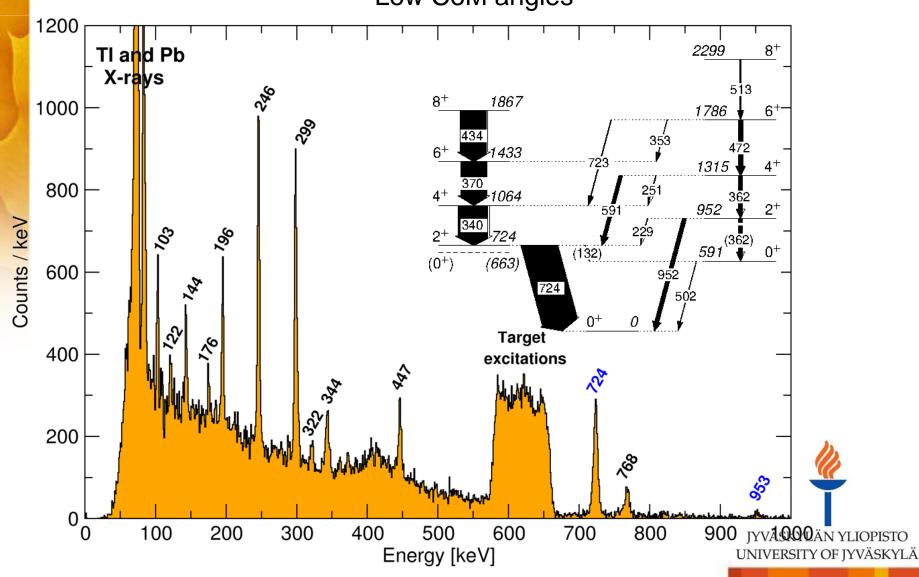
#### **Outline**

1) Physics background and motivation

2) Experiment description



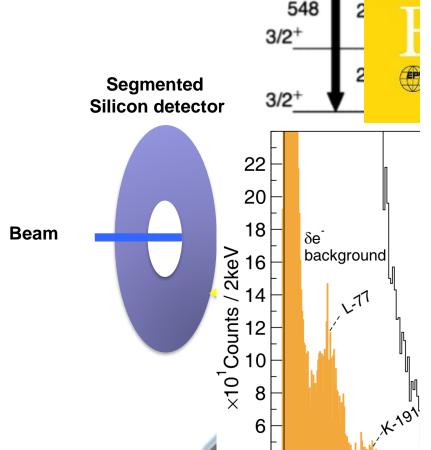
#### Coulomb excitation of <sup>188</sup>Pb


- ♦ UCx target + LIST/VADLIS
- ♦ HIE-ISOLDE beam ~10<sup>6</sup>pps @ MINIBALL
- Two energies: 3.5 and 4.1MeV/u
- ♦ Two targets: <sup>112</sup>Cd and <sup>48</sup>Ti
- ♦ Typical MINIBALL set-up + SPEDE

| Number of shifts                                  |   |                                  |
|---------------------------------------------------|---|----------------------------------|
| <sup>188</sup> Pb on <sup>120</sup> Sn @ 4.2MeV/u | 2 | Lasers off runs 30% of beam time |
| <sup>188</sup> Pb on <sup>120</sup> Sn @ 3.5MeV/u | 3 | "                                |
| <sup>188</sup> Pb on <sup>48</sup> Ti @ 4.0MeV/u  | 2 | "                                |
| <sup>188</sup> Pb on <sup>48</sup> Ti @ 3.5MeV/u  | 3 | "                                |



### DC bgr subtracted γ-rays from IS494


Low CoM angles



The SPEDE spectrometer

50

100



199195

#### **Beta-decay studies**



As can be seen in Fig. 2, a better algorithm to clean References the spectrum in the region of interest is needed. So far we can only set an experimental upper limit for the branching to this state of  $4.4 \times 10^{-6}$ .

- T. Nilsson, Hyperfine Interact. 129, 67 (2000).
- [2] S. Vinals, ISOLDE Newsletter p. 22 (2018).
- [3] M. Munch, IEEE TNS 66, 575 (2019).

#### Shape coexistence in proton-rich $^{182,184,186}$ Hg isotopes studied through $\beta$ decay

Results of experiment IS641

Marek Stryiczyk for the IDS collaboration

the most prominent example of shape coexistence [1]. was about an order of magnitude higher than reported The experimental \( \gamma^-\) and electron spectroscopy stud- in the Yield Database. The detection setup consisted of ies point to the coexistence of two classes of states in four standard IDS HPGe clovers, combined with an adthe even-mass mercury isotopes with strong mixing between the low-lying states in 182,184Hg [1, 2, 3]. In particular, the presence of strong E0 components in the 2<sup>+</sup><sub>2</sub> → 2<sup>+</sup><sub>1</sub> transitions are interpreted as a fingerprint for mixing between two states with different deformation [1, 3].

The spectroscopic quadrupole moments (Qs) and monopole transition strengths ( $\rho^2(E0)$ ), which allow states exhibiting different deformations to be distinguished unambiguously, will be measured in the Coulomb excitation (Coulex) experiment at HIE-ISOLDE [4]. However, additional spectroscopic information (branching ratios and internal conversion electron (ICE) coefficients) is needed for the data analysis [5]. Although these values have been provided by a previous thallium  $\beta$ -decay experiment [3], the uncertainties of the conversion coefficient and the \( \gamma\)-ray branching ratios for the 22 - 21 transition of interest are of the order of 20 - 30%. The main goal of the experiment was to reduce these uncertainties and, consequently, to increase the precision of  $Q_s$  and  $\rho^2(E0)$  values in the future Coulex experiment.

The beams of 182,184,186 TI were produced in protoninduced-fission of a UCx target, selectively ionized by RILIS, mass separated by HRS and, finally, implanted on the movable tape station at the ISOLDE Decay Sta-

The proton-rich mercury isotopes represent one of tion (IDS). The measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield of 182TI, 1.3 × 105 to 100 measured yield yie ditional HPGe clover and the SPEDE spectrometer recently developed for ICE measurements [6]. A FWHMresolution of 7 keV for 300-keV electrons was achieved. allowing the separation of neighboring peaks.

> Examples of the \( \gamma\)-ray and electron energy spectra gated on the 1837 keV γ-ray transition in 182Hg are presented in Fig. 1. Prominent peaks at 261 keV and 351 keV are associated with the 4<sup>+</sup><sub>1</sub> → 2<sup>+</sup><sub>1</sub> and 2<sup>+</sup><sub>1</sub> → 0<sup>+</sup><sub>1</sub> transitions, respectively. Preliminary results show an agreement with the known decay scheme, however, the final data analysis is currently ongoing.

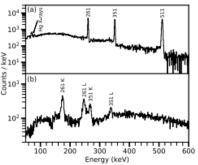



Figure 1: Portions of the background-subtracted (a) γ- and (b) electron energy spectra gated on the 1837 keV transition in 182 Hg. The transition energies are given in keV.

http://isolde-ids.web.cern.ch/isolde-ids/

#### Yield estimates for <sup>188</sup>Pb

number of shifts as in proposal –

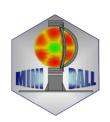
| l <sub>i</sub> <sup>π</sup> →l <sub>f</sub> <sup>π</sup><br>Projectile | E <sub>transition</sub> [keV] | Det. Eff.<br>[%] | 4.3MeV/u<br><sup>188</sup> Pb+ <sup>120</sup> Sn | 3.5MeV/u<br><sup>188</sup> Pb+ <sup>120</sup> Sn | 4.0MeV/u<br><sup>188</sup> Pb+ <sup>48</sup> Ti | 3.5MeV/u<br><sup>188</sup> Pb+ <sup>48</sup> Ti |
|------------------------------------------------------------------------|-------------------------------|------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| $2_1^+ \rightarrow 0_1^+$                                              | 723.5                         | 8.8              | 126375                                           | 107093                                           | 3695                                            | 4749                                            |
| $4_1^+ \rightarrow 2_1^+$                                              | 340.2                         | 14.1             | 61877                                            | 36737                                            | 1890                                            | 1607                                            |
| $6_1^+ \rightarrow 4_1^+$                                              | 369.7                         | 13.3             | 28827                                            | 10907                                            | 666                                             | 359                                             |
| $8_1^+ \rightarrow 6_1^+$                                              | 433.8                         | 12.0             | 8725                                             | 1752                                             | 115                                             | 35                                              |
| $2_1^+ \rightarrow 0_2^+$                                              | 133.9                         | 7.0              | 170                                              | 455                                              | 16                                              | 20                                              |
| $2_2^+ \rightarrow 0_1^+$                                              | 952.5                         | 7.5              | 37970                                            | 24846                                            | 1341                                            | 1380                                            |
| $4_2^+ \rightarrow 2_2^+$                                              | 362.5                         | 13.5             | 19402                                            | 7680                                             | 533                                             | 345                                             |
| $6_2^+ \rightarrow 4_2^+$                                              | 471.5                         | 11.4             | 4570                                             | 890                                              | 70                                              | 26                                              |
| $8_2^+ \rightarrow 6_2^+$                                              | 513.0                         | 10.8             | 812                                              | 73                                               | 6                                               | 1                                               |
| $2_2^+ \rightarrow 0_2^+$                                              | 361.5                         | 13.5             | 3542                                             | 2317                                             | 125                                             | 129                                             |
| $2_2^+ \rightarrow 2_1^+$                                              | 228.7                         | 18.0             | 1352                                             | 879                                              | 47                                              | 48                                              |
| $2_2^+ \rightarrow 2_1^+$                                              | 140.2ª)                       | 8.0              | 1202                                             | 782                                              | 42                                              | 29                                              |
| $0_2^+ \rightarrow 0_1^+$                                              | 502.5 <sup>a)</sup>           | 8.0              | 2294                                             | 1538                                             | 80                                              | 83                                              |
| Target                                                                 |                               |                  |                                                  |                                                  |                                                 |                                                 |
| $2_1^+ \rightarrow 0_1^+$                                              | <sup>120</sup> Sn: 1171       | 6.6              | 53153                                            | 26619                                            | 17241                                           | 17875                                           |
| $Z_1 \rightarrow U_1$                                                  | <sup>48</sup> Ti: 984         | 7.3              | 22122                                            | 20019                                            | 1/241                                           | 1/8/3                                           |
| $4_1^{T} \rightarrow 2_1^{T}$                                          | <sup>120</sup> Sn: 1023       | 7.2              | 10795                                            | 1640                                             | 63                                              | 16                                              |
|                                                                        | <sup>48</sup> Ti: 1312        | 6.1              | 10793                                            | 1040                                             | 03                                              | 10                                              |
| $2_2^+ \rightarrow 0_1^+$                                              | <sup>120</sup> Sn: 2097       | 4.2              | 71                                               | 12                                               | 1                                               | 0                                               |
| 22 7 01                                                                | <sup>48</sup> Ti: 2421        | 3.5              | /1                                               | 12                                               | 1                                               | U                                               |

<sup>&</sup>lt;sup>a)</sup> K-conversion electron energy



### Summary

#### Instrumentation:


- ✓ Standard MINIBALL configuration + SPEDE
- ✓ SPEDE ready (plans for further developments)
- Complementary data obtained

#### Request:

- 1) We request 10 shifts for <sup>188</sup>Pb experiment
- Yield tests (and TI suppression) employing VADLIS



## Acknowledgements



















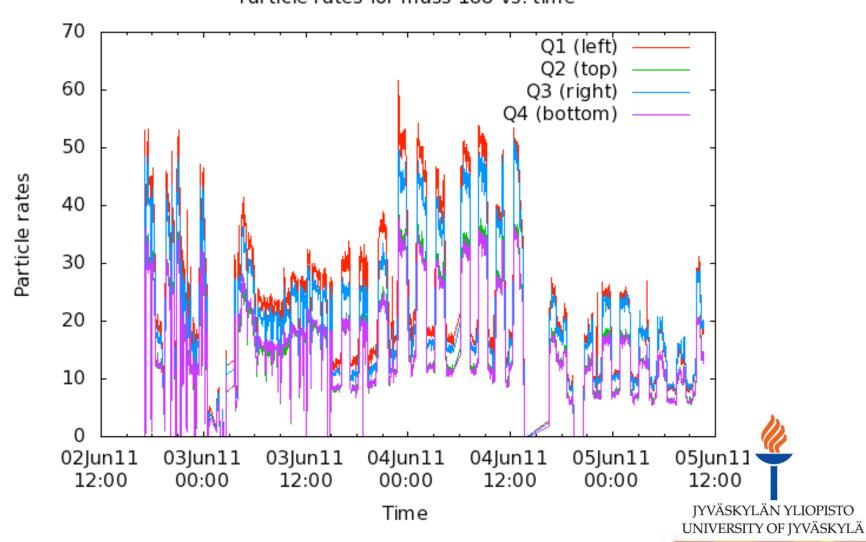


Technische Universität München

Comenius University Bratislava Slovakia

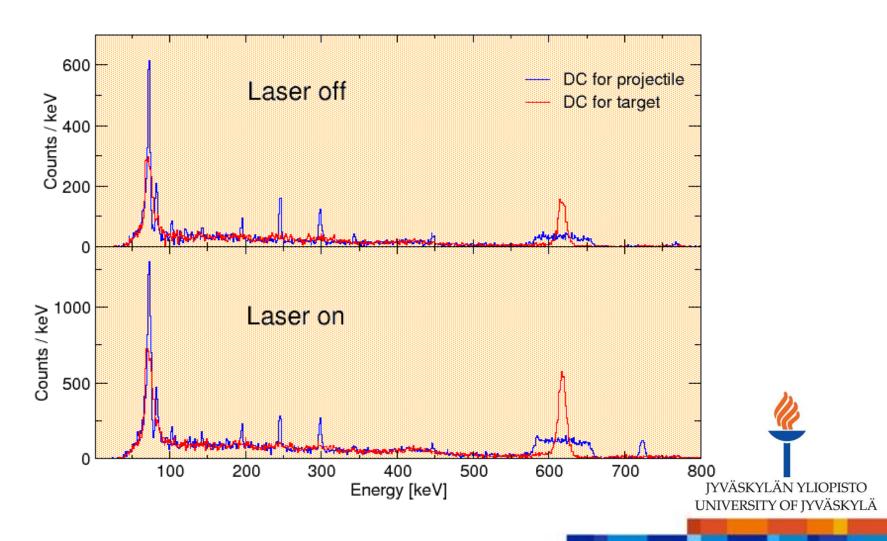




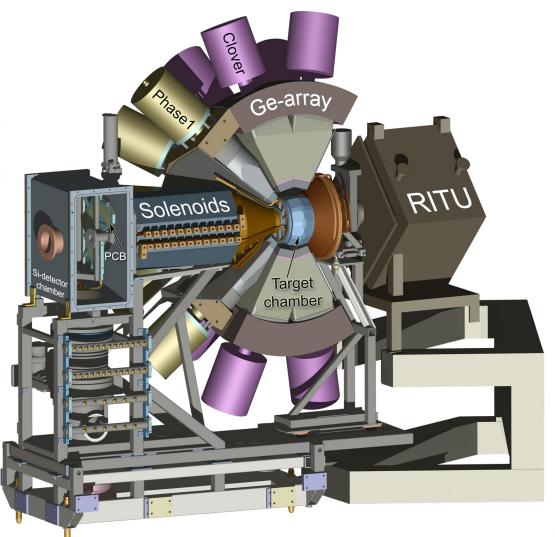








#### Laser on/off

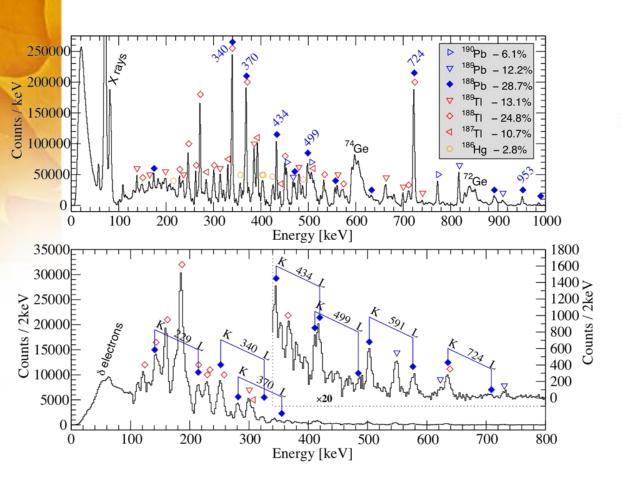
Particle rates for mass 188 vs. time

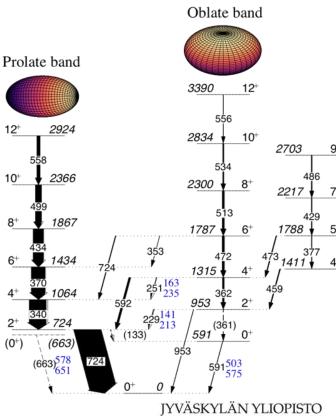



#### Laser on/off

γ-rays in coincidence with <sup>188</sup>Pb detected in low CoM angles




## Probing conversion electrons in <sup>188</sup>Pb using the SAGE spectrometer




- 160Dy(32S,4n)188Pb
- E<sub>beam</sub>=165MeV
- σ~1100μb
- I<sub>beam</sub> ≈ 18pnA
- 7 days of beam time
- SAGE+RITU+GREAT
- Fully digital DAQ



## Direct measurement of conversion electrons in <sup>188</sup>Pb





UNIVERSITY OF JYVÄSKYLÄ