

Status report on addendum IS599: β-delayed neutron spectroscopy of ^{(52,53),54}K

Andrea Gottardo For the IDS and VANDLE collaborations: Robert Grzywacz Miguel Madurga

UTK, Knoxville, TN, USA ORNL, Oak Ridge, TN, USA

Neutron-rich Ca isotopes: a paradigm for shell-model

J. Bonnard, S. M. Lenzi, and A. P. Zuker Phys. Rev. Lett. 116, 212501 (2016)

Results

3/15

The n-rich Ca region: GT across shell closures

The IDS-VANDLE setup

VANDLE: Versatile Array of Neutron Detectors at Low Energy: ε: 8 %; σ: 80 keV (1 MeV)

- Neutron TOF EJ200 plastic scintillators
- Two four clovers
- High-efficiency β detector (>80 %)
- IDS tape transport
- Sensitive even at low rates

ISOL beams

ISOL beams @ ISOLDE ^{51,52,53,54}K : surface ionization

- Rates: 3-5 pps for ${}^{53}K$, <1 pps for ${}^{54}K$
- Main limiting factor: $T_{1/2}{:}$ 30 ms for ^{53}K and 10 ms for ^{54}K

5/15

Previous Tonnere experiment F. Perrot et al., Phys. Rev. C 74 014313 (2006)

⁵²K results: neutron emission

β-delayed neutrons INTC2019

Time (ns)

⁵³K results: γ and neutron emission

^{52,53}K results: neutron emission deconvoluted

- Simulated TOF shape verified on experiment
- Fit with 20-30 peaks plus a constant background
- Number of neutrons consistent with P_n from γ rays in ⁵²Ca, a little higher for ⁵³Ca.

Results

⁵²K-⁵³K results: B(GT) distribution

B(GT) distribution

- Some FF strength at low energies
- GT strength starts at around 6 MeV (logft < 6)
- Peak in the GT distribution at around 6.5-7 MeV
- Gradual decrease of strength towards 10 Mev

10/15

Shell-model calculations: sdpf space

B(GT) and FF

- sdpf-kb3g.a53 interaction by A. Poves,
 1p-1h excitations
- GT distribution: low-energy feature at 6-7 MeV: $vf_{5/2} \rightarrow \pi f_{7/2}$ main component
- Small B(GT) values: N=34 closure

Comparison with theory = Exp.

Very quenched B(GT)

- · Large B(GT) quenching,
- GT vf_{5/2} -> π f_{7/2} due to scattering across N=34: ⁵³K ~75% closed N=34 core (85% in ⁵⁴Ca). Maybe small GT linked with large radii ? Neutron sd shells from above N=50 ?

What we expect to see (1)

- Calculations with the SDPF interaction predict a 2⁻ ground state for ⁵⁴K (also from systematics)
- 2. Shell-model calculations also predict a strong population of 3^{-} states, above the S_n =4.4 MeV
- 3. After GT: holes in $f_{7/2}$, $p_{3/2}$, $p_{1/2}$, neutrons in $f_{5/2}$

In the n-emission daughter ⁵³Ca, which states populated ? What is the fragmentation ? -> observing 10-20 % branches

What we expect to see (2)

⁴⁹⁻⁵⁴K β (GT) decay to ⁴⁹⁻⁵⁴Ca with GXPF1A

Shell-model predictions

- Large-scale shell-model calculations in the sdpf space with Antoine: intense 3⁻
- Strong $vf_{5/2} \rightarrow \pi f_{7/2}$ GT transition at 5-6 MeV

	$rac{arphi f_{7/2}}{\pi f_{7/2}}$	$egin{array}{l} m{vp}_{3/2} \ \pi p_{3/2} \end{array}$	$egin{array}{l} m{vp}_{1/2} \ \pi p_{1/2} \end{array}$	$v{f}_{5/2} \ \pi f_{5/2}$
⁵⁴ Ca after GT	6.7 0.8	3.4 0.1	1.6 0.03	2.2 0.004

Results:

- From ⁵⁴Ca γ-ray spectroscopy: more detailed level scheme, comparison with different 3-body models
- From neutron spectroscopy: GT distribution as a probe of N=34

⁵⁴K decay

What we have observed: 54K -> 54,53Ca

Only one γ ray observed: likely it is the 5/2⁻ state already seen at RIKEN

KB3G_POV interaction in ⁵³Ca: 5/2⁻ is 86% $(vp_{1/2})^0 (vf_{5/2})^1$

⁵⁴K: N=35 isotope. One neutron in $f_{5/2}$?

Paring $f_{5/2} = 1.2$ MeV; Pairing $p_{1/2} = 0.2$ MeV : strong pair scattering across N=34

⁵⁴K 2⁻ gs (GXPF1A-BR): $\langle f_{5/2} \rangle = 3$; $\langle p_{1/2} \rangle = 0.8$ ⁵⁴K 2⁻ gs (KB32_POV): $\langle f_{5/2} \rangle = 1.4$; $\langle p_{1/2} \rangle = 1.8$

In total, 15 shifts (five days) were assigned

⁵⁴K rate (realistic, based on previous result plus some target improvements): **0.5 pps**, (possible to improve with target optimized for fast release ?):

- 8% neutron efficiency, 90% β efficiency, 2 % γ efficiency
- 60-90 % neutron emission: around **10⁴ neutrons detected in 5 days** (assigned by INTC)

- 10% feeding to excited ^{54}Ca states: around 150 γ rays from ^{54}Ca in 5 days; mainly 2⁺ and 3⁻, likely also 4⁺ states

- Lifetime from neutrons and gammas

A fast extraction needed for ⁵⁴K (10ms half life). With nano-UCX this can be feasible but not guaranteed, fluctuations are possible.

⁵²K results: γ-ray spectroscopy

⁵⁰₂₀Ca + 2n^{13.9(6) s}

Predominance of β-delayed neutron emission

In exotic nuclei close to shell closures one can have very large Q values

(10-20 MeV)

The β decay can populate states below and above the neutron (and 2n) separation energy

- GT vs. FF transition competition caused by interplay of phase space and shell structure effects
- Particle-hole states may provide a measure of the shell energies in exotic nuclei

β-delayed neutrons INTC2019

Results