KU LEUVEN

NUCLEAR AND RADIATION PHYSICS

IS456 Study of polonium isotopes groundstate properties by simultaneous atomic & nuclear spectroscopy

Spokesperson: Prof Thomas Elias Cocolios Local contact: Dr Reinhard Heinke

IS456: 22.5 shifts remaining

≻IS456 so far

- Shape evolution across the isotopic chain
- Kink and odd-even staggering
- Complementary decay spectroscopy
- Remaining scientific case
 - Long-lived high-spin isomers just beyond N=126
 - Neutron-rich isotopes near N=136

Challenges and how to address them

- From the LIST to the 2-repeller LIST
- Detection setups

IS456: in-source laser spectroscopy

Phase 0: 2006

- First laser ionization tests 0
- Saturation of the optical transitions • Yields of ¹⁹³⁻²⁰⁴Po •

Phase 1: 2007

11/2 9/2 7/2 5/2

13/2

11/2

9/2

F = 5/2

- Simultaneous GLM / CA0 beams
- Windmill: ¹⁹³⁻¹⁹⁹Po
- Tape station: 199-200,202,204Po

Phase 2: 2009

- Repeat of key measurements
- Faraday cup: ^{206,208-210}Po
- Pseudo offline: ^{211g}Po
- Not using GLM to reach ^{216,218}Po •
- Extra tape station: ²⁰¹⁻²⁰³Po
- Extreme sensitivity: ¹⁹¹Po

Phase 3: 2012

- LIST test
- Proof-of-principle measurements
- HFS: ²¹⁷Po
- Alpha decay: ²¹⁹Po •

IS456: Shape coexistence near ¹⁸⁶Pb

Somewhat unexpected picture where the polonium isotopes depart steadily from sphericity, in contrast to how mercury staggers.

Rn

All observables are in agreement: dr2, moments from hfs, lifetime measurements and CoulEx.

T.E. Cocolios et al, Physical Review Letters 106 (2011) 052503. M.D. Seliverstov et al, Physical Review C 89 (2014) 034323. N. Kesteloot et al, Physical Review C 92 (2015) 054301.

 \mathcal{N}

The kink at the shell closure is not in itself a surprise, however its reproduction by nuclear theory remains a challenge, as much as its experimental investigation.

P.M. Goddard, P.D. Stevenson and A. Rios, Physical Review Letters 110 (2013) 032503.
G.J. Farooq-Smith et al, PRC 94 (2016) 054305 & PhD Thesis (2019) KU Leuven.
& picture adapted from A.E. Barzakh et al, Physical Review C 97 (2018) 014322.

IS456: furthering the study around N=126

- Isotopes north-east of ²⁰⁸Pb are all short-lived, down to µs and even ns. This has greatly limited the study of N=127-128 isotones, especially for the understanding of the kink in dr2.
- High-spin isomers exist in ²¹¹⁻²¹²Po, which could give an insight into these features.
- Magnetic dipole moments will be studied to confirm the configuration.

d _{3/2} 210Po	Isotope	Half-life	Spin	Proton configuration	Neutron configuration
	²¹¹ g Po	0.516 s	9/2+	($\pi h_{9/2})^2_{0+}$	(vg _{9/2})
 I he (VI_{11/2}) orbital is supposedly responsible for the kink and this could 	^{211m} Po	25.2 s	(25/2+)	$(\pi h_{9/2})^2_{8+}$	(vg _{9/2})
become more evident in the measurement	^{212g} Po	0.3 µs	0+	$(\pi h_{9/2})^2_{0+}$	(vg _{9/2}) ² ₀₊
of ^{212m} Po!	^{212m} Po	45.1 s	(18+)	$(\pi h_{9/2})^2_{8+}$	$(vg_{9/2})(vi_{11/2})_{10+}$

H. Nakada & T. Inakura, Physical Review C 91 (2015) 021302R.

IS456: Beyond N=126

- Recent Energy Density Functionals calculations for Ac have highlighted how the trend in the dr2 is not a linear extrapolation from N=126, but rather undergoes a step in the vicinity of N=130.
 This behavior coincides with where the calculations suggest an onset of octupole deformation.
- Measurements of dr2 between N=126 and 132 are necessary to benchmark this with experimental observation.
 - Odd-even staggering investigation in the region N=132-140 in polonium would also shed light on the possible correlations between the dr2 behavior and the shapes in this region.

E. Verstraelen et al, Physical Review C **100** (2019) 044321. D. Fink et al, Physical Review X **5** (2015) 011018.

•

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

* Yields estimated based on

** Constant in-target feeding

ABRABLA calculations

by ²²³Ac with $T_{1/2} = 2$ min

4	Pc	olonium	Fra	ancium
A	T _{1/2}	Yield* [ions/µC]	T _{1/2}	Yield [ions/µC]
211	25.2 s	2 x 10 ⁴	3 min	10 ⁸
212	45.1 s	2 x 10 ⁴	20 min	10 ⁸
219	10.3 min	3 x 10 ¹	20 ms**	10 ³
220	-	1 x 10 ¹	27.4 s	10 ⁷

Isobaric contamination!

	²⁰⁹ Ac 94 ms	²¹⁰ Ac 350 ms	²¹¹ Ac 213 ms	²¹² Ac 895 ms	²¹³ Ac 738 ms	²¹⁴ Ac 8.2 s	²¹⁵ Ac 170 ms	²¹⁶ Ас 440 µs	²¹⁷ Ac _{69 ns}	²¹⁸ Ac 1000 ns	²¹⁹ Ас 11.8 µs	²²⁰ Ac 26.36 ms	²²¹ Ac _{52 ms}	²²² Ac 5 s	²²³ Ac 126 s	²²⁴ Ac 166.8 m	²²⁵ Ac 9.92 d	²²⁶ Ac 29.37 h	²²⁷ Ac 21.772 y	²²⁸ Ac 6.15 h	2
	²⁰⁸ Ra 1.11 s	²⁰⁹ Ra _{4.71 s}	²¹⁰ Ra 4s	²¹¹ Ra ^{13.2 s}	²¹² Ra ^{13 s}	²¹³ Ra _{163.8 s}	²¹⁴ Ra 2.437 s	²¹⁵ Ra 1.67 ms	²¹⁶ Ra ^{182 ns}	²¹⁷ Rа 1.63 µs	²¹⁸ Ra ^{25.2 µs}	²¹⁹ Ra ^{10 ms}	²²⁰ Ra 17.9 ms	221 Pa 28 s	²²² Ra ^{33.6 s}	²²³ Ra 11.4377 d	²²⁴ Ra 87.1656 h	²²⁵ Ra 14.9 d	²²⁶ Ra ^{1.6 ky}	²²⁷ Ra ^{42.2 m}	2
15456: challenges	²⁰⁷ Fr 14.8 s	²⁰⁸ Fr 59.1 s	²⁰⁹ Fr ^{50.5 s}	²¹⁰ Fr 190.8 s	²¹¹ Fr 186 s	²¹² Fr ^{20 m}	²¹³ Fr 34.14 s	²¹⁴ Fr 5.18 ms	²¹⁵ Fr 86 ns	²¹⁶ Fr 700 ns	²¹⁷ Fr 16.8 µs	²¹⁸ Fr 1000 µs	²¹⁹ Fr ^{20 ms}	²²⁰ Fr ^{27.4 s}	²²¹ Fr 4.801 m	²²² Fr 14.2 m	²²³ Fr _{22 m}	²²⁴ Fr 199.8 s	²²⁵ Fr ^{237 s}	²²⁶ Fr ^{49 s}	12
	²⁰⁶ Rn 5.67 m	²⁰⁷ Rn 9.25 m	²⁰⁸ Rn 24.35 m	²⁰⁹ Rn ^{28.8 m}	²¹⁰ Rn 144 m	²¹¹ Rn 14.6 h	²¹² Rn ^{23.9 m}	²¹³ Rn 19.5 ms	²¹⁴ Rn _{270 ns}	²¹⁵ Rn 2.3 µs	²¹⁶ Rn 45 µs	²¹⁷ Rn ^{540 به}	²¹⁸ Rn 33.75 ms	²¹⁹ Rn 3.96 s	²²⁰ Rn 55.6 s	²²¹ Rn 25.7 m	²²² Rn 91.716 h	²²³ Rn ^{24.3 m}	²²⁴ Rn 107 m	²²⁵ Rn 4.66 m	2
	²⁰⁵ At ^{33.8 m}	²⁰⁶ At ^{30.6 m}	²⁰⁷ At 108.6 m	²⁰⁸ At ^{97.8 m}	²⁰⁹ At ^{5.42 h}	²¹⁰ At 8.1 h	²¹¹ At 7.214 h	²¹² At _{314 ms}	²¹³ At 125 ns	²¹⁴ At 558 ns	²¹⁵ At 100 µs	²¹⁶ At 300 µs	²¹⁷ At 32.62 ms	²¹⁸ At 1.5 s	²¹⁹ At 56 s	²²⁰ At 222.6 s	²²¹ At ^{138 s}	²²² At ^{54 s}	²²³ At 50 s	²²⁴ At 150 s	2
Isobaric contamination!	²⁰⁴ Po 211.14 m	²⁰⁵ Po 104.4 m	²⁰⁶ Po 8.8 d	²⁰⁷ Po 5.8 h	²⁰⁸ Po 2.898 y	²⁰⁹ Po 124 y	²¹⁰ Po 138.376 d	²¹¹ Po 516 ms	²¹² Po 294.7 ns	²¹³ Ро 3.708 µs	²¹⁴ Ро 163.72 µs	²¹⁵ Po 1.781 ms	²¹⁶ P0 145 ms	²¹⁷ Po 1.514 s	²¹⁸ Po 185.88 s	²¹⁹ Po 10.3 m	# ²²⁰ Po 40 s	²²¹ Po 132 s	²²² Po _{9.1 m}	≇ 223 PO 60 s	2
	²⁰³ Bi 11.76 h	²⁰⁴ Bi 11.22 h	²⁰⁵ Bi 15.31 d	²⁰⁶ Bi 6.243 d	²⁰⁷ Bi _{31.2 y}	²⁰⁸ Ві 368 ку	²⁰⁹ Bi 20.1 Ey	²¹⁰ Bi 5.012 d	²¹¹ Bi _{128.4 s}	²¹² Bi 60.55 m	²¹³ Bi 45.61 m	²¹⁴ Bi 19.9 m	²¹⁵ Bi _{7.6 m}	²¹⁶ Bi 135 s	²¹⁷ Bi 98.5 s	²¹⁸ Bi ₃₃ ₅	²¹⁹ Bi ^{8.7 s}	²²⁰ Bi _{9.5 s}	# ²²¹ Bi 55	≇ 222Bi 2\$	1
	²⁰² Pb 52.5 ky	²⁰³ Pb 51.916 h	²⁰⁴ Pb	²⁰⁵ Pb 17.3 My	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb ^{194.04 m}	²¹⁰ Pb _{22.2 y}	²¹¹ Pb 36.164 m	²¹² Pb ^{10.64 h}	²¹³ Pb 10.2 m	²¹⁴ Pb _{27.06 m}	²¹⁵ Pb 140.4 s	²¹⁶ Pb _{99 s}	²¹⁷ Pb _{20 s}	²¹⁸ Pb 15 s	# ²¹⁹ Pb 10 s	# ²²⁰ Pb 30 s		
	²⁰¹ TI 73.0608 h	²⁰² TI 12.31 d	²⁰³ TI	²⁰⁴ TI 3.783 y	²⁰⁵ TI	²⁰⁶ TI 4.202 m	²⁰⁷ TI 4.77 m	²⁰⁸ TI 183.18 s	²⁰⁹ TI 129.72 s	210 TI 78 s	²¹¹ TI 80 s	²¹² TI 31 s	²¹³ TI ^{24 s}	²¹⁴ TI 11 s	²¹⁵ TI ^{10 s}	²¹⁶ TI 6 s	# ²¹⁷ TI 1000 ms	# 218 T 200 ms			
	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰³ Hg	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg	²⁰⁷ Hg	²⁰⁸ Hg	²⁰⁹ Hg	²¹⁰ Hg	²¹¹ Hg	≇ ²¹² Hg	* ²¹³ Hg	≇ ²¹⁴ Hg	* ²¹⁵ Hg	# ²¹⁶ Hg				

IS456: Solutions

LIST 2.0!

- 2012 attempt showed promise (e.g. hfs of ²¹⁷Po, first α decay spectroscopy of ²¹⁹Po) but suppression of ²¹²Fr was far inferior to that of ²⁰⁵Fr.
- Electron impact ionization of decay products of radioactive material deposited on the LIST surfaces (namely from deposited isobaric Ra) is the reason.
- A new LIST has been designed in Mainz with a double repeller system to prevent surface ions AND electrons from entering the RFQ.
- The LIST 2.0 will be implemented as an ISOLDE standard ion source in the course of 2020 ready for the facility restart in 2021.

¹⁰ *M.* Truemper, BSc Thesis (2015), Mainz. *R. Heinke, PhD Thesis (2019), Mainz.*

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

IS456: challenges

- The Windmill is dead and buried and never to be seen again...
- FC is not an option for those beams
- T_{1/2} in ²¹⁹⁻²²⁰Po is not favorable for decay counting

²⁰⁰ Hg	²⁰² Hg 46.613 d ²⁰⁴ Hg 5.14m	200Hg 207Hg 208Hg 209Hg 210Hg 8.32m 174s 42m 38s 64s	21°Hg 212Hg 213Hg 21°Hg 26 s 60 s 1000ms 1000ms	1000 ms 100 ms			
Δ	Po	lonium	Fra	ancium			
A	T _{1/2}	Decay mode	T _{1/2}	Decay mode			
211m	25.2 s	>99.9% α	3 min	87% α / 13% β			
212m	45.1 s	>99.9% α	20 min	43% α / 57% β			
219	10.3 min	28% α / 72% β	20 ms	α			
220	-	-	27.4 s	>99.6% α			

²¹¹Ra ²¹²Ra ²¹³Ra _{163.8 s} ²¹⁴Ra ²¹⁵Ra ²¹⁸Ra ²²¹Ra ²²²Ra ²²⁶Ra 1.6 ky ²²³Ra 11.4377 d ²²⁴Ra ¹⁰Ra ²¹⁷Ra ²¹⁹Ra ²²⁰Ra ²²⁵Ra 14.9 d ²²⁷Ra _{42.2 m} 'Ra ⁰Ra 13.2 s 33.6 s 13 s 25.2 µs 28 s 87.1656 h 4.71 s 4 s 2.437 s 1.67 ms 182 ns 1.63 µs 10 ms 17.9 ms ²⁰⁹Fr 50.5 s ²²⁰Fr _{27.4 s} ²²³Fr _{22 m} ²²⁴Fr 199.8 s ²¹⁰Fr ²¹³Fr ²¹⁴Fr ²¹⁷Fr ²¹⁸Fr ²⁰⁸Fr ²¹¹Fr 186 s ²¹²Fr 20 m 215Fr ²¹⁶Fr ²¹⁹Fr ²²¹**Fr** 4.801 m ²²²Fr 14.2 m ²²⁵Fr 237 s ²²⁶Fr 190.8 s 59.1 s 34.14 s 5.18 ms 86 ns 700 ns 16.8 µs 1000 µs 20 ms 49 s ²¹²Rn 23.9 m ²²¹Rn 25.7 m 209 Rn ²¹³Rn 216 Rn ²¹⁷Rn ²²⁰Rn 55.6 s 222Rn 225 Rn ²⁰⁷Rn 9.25 m 208 Rn 24.35 m ²¹⁰Rn 144 m ²¹¹Rn 14.6 h ¹⁴Rn 215 Rn ²¹⁹Rn 3.96 s ²²³Rn 24.3 m ²²⁴Rn 107 m ¹⁸Rn 28.8 m 19.5 ms 270 ns 2.3 µs 540 µs 33.75 ms 91.716 h 4.66 m 45 µs ²¹²At ²¹⁸At 216At ²⁰⁷At 108.6 m ²⁰⁸At 97.8 m ²⁰⁹At 5.42 h ²¹⁰At 8.1 h ²¹¹At 7.214 h ²¹⁴At 215At 219At ²²⁰At 222.6 s ²²¹At 138 s ²²²At ²²³At 50 s 224At 206At 213At 217At 314 ms 30.6 m 125 ns 1.5 s 56 s 54 s 150 s 558 ns 100 µs 300 µs 32.62 ms ²⁰⁹Po 124 y ²¹⁷PO ²⁰⁸Po 2.898 y ²¹⁰Po 138.376 d ²²⁰Po 40 s 214Po ²¹⁸Po ²⁰⁵Po 104.4 m ²⁰⁶Po 8.8 d ²⁰⁷Po 5.8 h ²¹¹Po ²¹²Po ²¹³Po ²¹⁵Po ²¹⁶Po ²¹⁹Po 10.3 m ²²¹Po 132 s ²²²Po 9.1 m 294.7 ns 185.88 s 🧹 516 ms 3.708 µs 163.72 µs 1.781 ms 145 ms 1.514 s ²⁰⁹Bi 20.1 Ey ²¹³Bi ²¹⁴Bi 215Bi ²¹⁷Bi ²¹⁸Bi ²²¹Bi ²¹¹Bi ²¹²Bi ²¹⁹Bi 220Bi ²⁰⁴Bi ²⁰⁵Bi ²º⁰Bi ²⁰⁷Bi ²⁰⁸Bi ²¹⁰Bi ²¹⁶Bi 31.2 y 15.31 d 11.22 h 6.243 d 368 ky 5.012 d 128.4 s 60.55 m 45.61 m 19.9 m 7.6 m 135 s 98.5 s 33 s 8.7 s 9.5 s 5 s 207Pb 208 Pb ²¹²Pb 10.64 h ²¹³Pb 10.2 m ²¹⁴Pb 27.06 m ²¹⁶Pb 99 s ²¹⁷Pb ²²⁰Pb ²⁰³Pb 51.916 h ²⁰⁴Pb 205Pb 206Pb 210Pb ²¹¹Pb ²¹⁵Pb 140.4 s ²¹⁸Pb ²¹⁹Pb 209Pb 17.3 My 194.04 m 22.2 y 36.164 m 20 s 10 s 15 s 30 s ²⁰²TI ²⁰³TI ²⁰⁴TI ²⁰⁵TI ²⁰⁶TI ²⁰⁷TI 208TI 209TI ²¹¹TI ²¹²TI ²¹⁴TI ²¹⁶TI ²¹⁰TI ²¹³TI 215TI ²¹⁷TI 218TI 12.31 d 3.783 y 4.202 m 4.77 m 183.18 s 129.72 s 78 s 80 s 31 s 1000 ms 24 s 11 s 10 s 6 s

219AC

11.8 µs

AC

52 ms

26.36 ms

°Ac

1000 ns

²²³Ac 126 s

Ac

5 s

²²⁵Ac 9.92 d

*Ac

166.8 m

226AC 29.37 h ²²⁷Ac 21.772 y

KU LEUVEN

UCLEAR AND RADIATION PHYSICS

²²⁸Ac 6.15 h

216AC

440 µs

Ac

69 ns

¹⁵Ac

170 ms

²¹⁴AC

8.2 s

²¹³Ac

738 ms

²¹²Ac

895 ms

Ac

213 ms

²¹⁰AC

350 ms

0.4 ms

™Ra

1.11 s

207 Fr

14.8 s

206Rn

5.67 m

205At

33.8 m

²⁰⁴Po

211.14 m

™Bi

11.76 h

202 Pb

52.5 ky

201TI

73 0608 F

IS456: Solutions

New α chamber & IDS

- IDS is equipped with a moving tape to remove the long-lived activity, perfect for ^{219,220}Po.
- The implantation point is surrounded by charged particle detectors and y-ray detectors for a comprehensive measurement of the decay of the implanted activity.
- Full synchronization with RILIS is established for scanning.

A replacement for the Windmill has been developed and tested for IS637.

It consists of a similar Si sandwich around a ladder with 10 C foils.

An integrated FC is • available for beam transport / tuning.

Free decay spectroscopy data acquired in the process Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica **Department of Physics & Astronomy**

IS456: Solutions

Single-ion counting

- Single-ion counting capability is currently available in the ISOLDE Central Beam Line.
- This would allow to measure long-lived isotopes like ²¹⁹⁻
 ²²⁰Po quickly and efficiently.

NOT for ²⁰⁸⁻²¹⁰Po

IS456: Shifts breakdown

	Isotope	Number of shifts
LIST test		2
Reference measurements	^{196,208-210} Po	2.5
HFS & IS	^{211m} Po	2
HFS & IS	^{212m} Po	2
HFS, IS & decay	²¹⁹ Po	7
HFS, IS & decay	²²⁰ Po	7
	TOTAL	22.5

The IS456 scientific case remains current and unchallenged

- No dr2 data on N=128, Z>83
- No new information on the configuration of the high-spin isomers
- New insight into the dr2 for N=130-140 requires new experimental data
- No new decay data on ^{219,220}Po

Main challenges have been addressed

- New LIST with double repeller to be fully integrated at ISOLDE
- New detection systems: α chamber, IDS, single-ion counting

Extra slides

IS456: Collaboration

E. Ahmed, A. Algora, B. Andel, A.N. Andreyev, S. Antalic, A.E. Barzakh, B. Bastin, M. Bissell, M. Borge, K. Chrysalidis, T.E. Cocolios, B. Cooper, J. Cubiss, H. De Witte, K. Dockx, D.V. Fedorov, V.N. Fedosseev, R. Ferrer, K.T. Flanagan, S. Franchoo, L. Fraile, H. Fynbo, L. Ghys, L.J. Harkness-Brennan, R. Heinke, D.S. Judson, J. Konki, U. Koster, I. Lazarus, N. Lecesne, R. Lica, N. Marginean, B.A. Marsh, C. Mihai, P.L. Molkanov, E. Nacher, A. Negret, J. Ojala, R.D. Page, J. Pakarinen, A. Perea, H. Perrett, L. Popescu, V. Pucknell, C. Ricketts, S.R. Rothe, H. Savajols, M.D. Seliverstov, S. Sels, C. Sotty, M. Stryjczyk, O. Tengblad, J. Van de Walle, P. Van den Bergh, P. Van Duppen, M. Vandebrouck, V. Vedia, M. Venhart, S. Vinals, R. Wadsworth, N. Warr, K.D.A. Wendt, S.G. Zemlyanoy

IS456: scientific output

≻6 papers & 5 conference proceedings with >250 citations

- 2 technical conference proceedings (EMIS NIMB) + 3 conference proceedings with results
- 1x EPJA, JPG, PLB, PRA, PRL, PRX
- ≻3 theses
 - 1 MSc
 - $_{\odot}$ Wim Dexters, KU Leuven 2010
 - 2 PhD
 - Thomas Cocolios, KU Leuven 2010
 - o Daniel Fink, Heidelberg 2015

Phase 0: 2006 First laser ionization tests Saturation of the optical transitions Yields of ¹⁹³⁻²⁰⁴Po

T.E. Cocolios et al, NIMB **266** (2008) 4403-4406.

Phase 0: 2006First laser ionization testsSaturation of the optical transitions

Department of Physics & Astronomy

 Saturation of the optical transitions Phase 2: 2009 Repeat of key measurements • Faraday cup: ^{206,208-210}Po

•

Phase 0: 2006

First laser ionization tests

- Pseudo offline: ^{211g}Po
- Not using GLM to reach ^{216,218}Po
- Extra tape station: ²⁰¹⁻²⁰³Po
- Extreme sensitivity: ¹⁹¹Po

peams

Isobaric Fr/Ra was the limiting factor in the neutron-rich isotopes Modified isotope shift (255.8 nm) [GHz]

T.E. Cocolios et al, Physical Review Letters 106 (2011) 052503. B. Cheal, T.E. Cocolios, S. Fritzsche, Physical Review A 86 (2012) 042501. Instituut voor Kern- en Stralingsrys **Department of Physics & Astronomy**

Counts

²¹ D. Fink et al, NIMB **317** (2013) 417-421.
 D. Fink et al, Physical Review X **5** (2015) 011018.

Interdisciplinary Research Group Instituut voor Kern- en Stralingsfysica Department of Physics & Astronomy

Phase 0: 2006

0

First laser ionization tests

M. Bender, private communication, adapted from M. Bender et al, PRC 73 (2006) 034322.
²³ T. Grahn et al, Nuclear Physics A 801 (2008) 83-100.
T.E. Cocolios, Hyperfine Interactions 238 (2017) 16.

IS456: odd-even staggering

The reversal of the odd-even staggering in dr2 has been observed in the region also known for its reflection asymmetry. As polonium is located at the low-Z edge of this region, investigating its charge distribution is crucial to further understand the link between these two properties.

IS456: Publications

Main scientific publications

- 1. T.E. Cocolios et al, *Structure of 191Pb from* α *and* β *-decay spectroscopy*, Journal of Physics G **37** (2010) 125103.
- 2. B. Cheal, T.E. Cocolios, T.E. Cocolios, W. Dexters, M.D. Seliverstov et al, *Early onset of ground state deformation in neutron deficient polonium isotopes*, Physical Review Letters **106** (2011) 052503.
- 3. S. Fritzsche, Laser spectroscopy of radioactive isotopes: Role and limitations of accurate isotope-shift calculations, Physical Review A 86 (2012) 042501.
- 4. M.D. Seliverstov, T.E. Cocolios, W. Dexters et al, *Charge radii of odd-A*¹⁹¹⁻²¹¹*Po isotopes*, Physics Letters B **719** (2013) 362-366.
- 5. M.D. Seliverstov, T.E. Cocolios, W. Dexters et al, *Electromagnetic moments of odd-A*^{191-203,211}*Po isotopes*, Physical Review C **89** (2014) 034323.
- 6. D.A. Fink, T.E. Cocolios et al, *In-source laser spectroscopy with the Laser Ion Source and Trap: first direct study of the ground-state properties of* ^{217,219}Po, Physical Review X **5** (2015) 011018.

Conference proceedings

- 1. T.E. Cocolios, B.A. Marsh et al, *Resonant laser ionization of polonium at RILIS-ISOLDE for the study of ground- and isomer-state properties*, NIMB **266** (2008) 4403-4406, Proceedings to the EMIS Conference 2007 in Deauville, France.
- 2. T.E. Cocolios et al, *Early onset of deformation in the neutron-deficient polonium isotopes (decay spectroscopy of ¹⁹⁹Po)*, Journal of Physics: Conference Series **381** (2012) 012072.
- 3. D.A. Fink, S.D. Richter et al, *First application of the Laser Ion Source and Trap (LIST) for on-line experiments at ISOLDE*, NIMB **317** (2013) 417-421, Proceedings to the EMIS Conference 2012 in Matsue, Japan.
- 4. T.E. Cocolios, *Shape coexistence in the lead region from a ground-state perspective*, xxx, (2015) page 43-49, Proceedings to the ISTROS Conference 2013 in Častá-Papiernička, Slovakia.
- T.E. Cocolios, A new perspective on charge radii around Z=82, Hyperfine Interactions 238 (2017) 16, Proceedings of the 10th International Workshop on Application of Lasers and Storage Devices in Atomic Nuclei Research: "Recent Achievements and Future Prospects" (LASER 2016), Poznan, Poland

