

ISOLTRAP Status Report 2014-2018

Maxime Mougeot for the ISOLTRAP collaboration

62nd INTC Meeting - CERN – 6 November 2019

Introduction

- Recent measurements with the ISOLTRAP mass spectrometer
- Status report for IS542,IS592,IS625,IS642
- Conclusion

INTRODUCTION

MR-ToF mass spectrometry :

Penning-trap mass spectrometry :

Recent measurements with the ISOLTRAP

Mass measurements since 2014:

MR-ToF assisted HFS:

Publication highlights:

Publication highlights:

A. Welker et al., Phys. Rev. Lett. 119, 192502 (2017)

11

B. Marsh et al., Nature Physics 14, 1163 (2018) V. Manea, J. Karthein et al., Submitted to Phys. Rev. Lett. (2019)

Status Report for IS542,IS592,IS625,IS642

Status report

Exp.	Total	Used	Accepted	Last sched-	Remaining	Proposed
	shifts	shifts/Remaining	isotopes	uled in	shifts in	status
		shifts in 2018			2019	after LS2
IS490	28	0/0	^{46–48} Ar,	2017	0	Close
			^{96–98} Kr			
IS532	27	11/11	$^{52-55}$ Sc	2018	0	Close
IS542	9	0/9	³² Ar	2014	9	Open
IS565	8	0/0	23 Mg/Na,	2016	0	Close
			21 Na/Ne			
IS567	17	0/0	³⁴ Mg/Al	2015	0	Close
IS574	19	0/0	$^{127-132}$ Cd	2017	0	Close
IS592	12	0/10	$^{131}Cs/Xe$	2017	10	Open
IS625	12	0/12	56 Cu, 58 Zn		12	Open
IS642	12	6/12	⁷⁰ Br/Se	2018	6	Open
Total Shifts in 2018 : 54				Total Shifts in	n 2019 : 37	

Status report IS542 : Physics case

• Testing accuracy of the IMME :

$$m(T_Z) = c_0 + c_1 T_Z + c_2 T_Z^2$$

• A = 32 T=2 quintet -> 32Ar, 32Cl, 32S, 32P, 32Sl

Mass excess uncertainty

- ³²Cl -> 0.6 keV
- ³²Cl -> 0.3 keV
- ³²P -> 0.2 keV
- ³²Si -> 0.7 keV
- ³²Ar -> 1.8 keV (Aim factor 10 reduction)
- Reduced $\chi^2 \ge 6.6$ with quadratic fit

Status report IS542 : Shift request

Isotope	Half-life	Yield (ions/ μ C ⁻¹)	Target	Ionisation Method	Shifts (8H)		
³² Ar	98.0 ms	800	nano-CaO	Hot Plasma	8		
Total Shifts: 8(+1 for tuning)							

• nano-CaO standard target unit

• ³²S or ³²O₂ stable isobaric contamination • Required R = $\frac{m}{\Delta m}$ ~ 1000 or 4000 respectively

Status report IS592 : Physics case

- Search for β -decay transitions with the lowest possible decay-energy
- Direct determination of the neutrino mass (micro-calorimeter)

L. Gastaldo et al., Eur. Phys. J. Special Topics 226, 1623–1694 (2017) 16

Status report IS592 : Physics case

- Search for β -decay transitions with the lowest possible decay-energy
- Direct determination of the neutrino mass

Mother	T _{1/2}	Stable Daughter	Q _{ge} / keV	δQ _{ge} / keV	Decay
¹³¹ Cs	9.7 d	¹³¹ Xe	-15 -11	5 5	EC∟ ECм
¹³⁴ Ce	3.2 d	¹³⁴ La	-8.4	29	ECκ
¹⁵⁹ Dy	144 d	¹⁵⁹ Tb	-0.21	2.0	ЕСм
¹⁷⁵ Hf	70 d	¹⁷⁵ Lu	0.20 -5.94	2.6 2.6	EC∟ ECκ

Status report IS592 : Status

Status report IS592 : Status

- very good agreement with well-established PTMS techniques
- 4 hrs beam time: $\delta m/m < 1.4 \cdot 10^{-9}$ with $\delta m < 200 \text{ eV}$

Status report IS592 : Status

- Improve Q_{ec} uncertainty by factor 25
- Preclude ¹³¹Cs as possible candidate for v_e-mass determination
- Successful PI-ICR online test (1st ISOLTRAP publication on PI-ICR)

Mother	T _{1/2}	Daugh.	Q _{ge} / keV	δQ _{ge} / keV	Decay
¹³¹ Cs	9.7 d	¹³¹ Xe	-15 -11	5 5	EC∟ ECм
¹³¹ Cs	9.7 d	¹³¹ Xe	-11.5 -7.2	0.2 0.2	EC∟ ECм

Status report IS592 : Shift request

Isotope	Half-life(d)	Yield (ions/ μ C ⁻¹)	Target	Ionisation Method	Shifts (8H)
¹⁵⁹ Dy	144	10^{8}	Та	Surface	19
159Tb	Stable	$ 10^7$		Jullace	12
175Hf	70	$>10^{7}$	T_{2}	Hot Plasma	19
¹⁷⁵ La	Stable	Plenty			
				Tota	l Shifts: 24

Mother	T _{1/2}	Daugh.	Q _{ge} / keV	δQ _{ge} / keV	Decay
¹³¹ Cs	9.7 d	¹³¹ Xe	-15 -11	5 5	EC∟ ECм
¹³⁴ Ce	3.2 d	¹³⁴ La	-8.4	29	ECκ
¹⁵⁹ Dy	144 d	¹⁵⁹ Tb	-0.21	2.0	ЕСм
175 Hf	70 d	¹⁷⁵ Lu	0.20 -5.94	2.6 2.6	EC _L ECκ

Status report IS625 : Physics case

- How does the *rp*-process proceed beyond ⁵⁶Ni in Type-I X-Ray bursts ?
- Ratio of (p, γ) to (γ , p) reaction rate $\propto exp(\frac{-Q(p, \gamma)}{kT})$
- Two reactions to consider :
 - ${}^{55}Ni(p,\gamma){}^{56}Cu \longrightarrow$ measured in [1] by the LEBIT group
 - ⁵⁷Cu(p,γ)⁵⁸Zn
- ⁵⁸Zn mass excess uncertainty 50 keV -> aimed at factor 5 reduction

Status report IS625 : Shift request

Isotope	Half-life (ms)	Yield (ions/ μ C ⁻¹)	Target/ion source	Shifts (8H)		
⁵⁸ Zn	86.7 (24)	10	$ZrO_2/RILIS$	3+9		
Total Shifts: 12						

- Stable Fe and/or Ni isobaric contaminants
- Required R = $\frac{m}{\Delta m}$ ~ 3000 —> HRS should be sufficient
- Should be feasible but difficult to guarantee (target variability)

Status report IS642 : Physics case

12 sigma deviation —> Redetermination of ^{70g}Br, ^{70m}Br and ⁷⁰Se

 [1] J. Savory, et al., Phys. Rev. Lett. 102, 132501 (2009).

 [2] D.G. Jenkins et al., Phys. Rev. C 65. 064307 (2002)

 24

[3] C. N. Davids, Atomic Masses and Fundamental Constants 6, edited by J. A. Nolen and W. Benenson (Plenum, New York) p. 419 (1980).

Status report IS642 : Status

- ⁷³Br⁺ —> already one order of magnitude less than contaminants
- A=70 strong Ga and As beams but NO ⁷⁰Br/Se seen
- No ²⁷Al⁷⁰Br⁺ sideband observed

Status report IS642 : Shift request

Summary :

- 21 Scientific publications in the period 2014-2019
- Major technical development —> PI-ICR
 First isomeric separation of ^{129g,m}Cd
- MR-ToF MS is a flexible tool :
 First mass measurement of ¹³²Cd
- Close 5 proposals with no shifts remaining
- Request to keep 4 proposals open :
 - Total shift starting 2019 : 37
 - Total requested shift :
 37 (remaining) + 14 (new) = 51

Acknowledgment :

D. Atanasov, K. Blaum, T. Cocolios,
S. Eliseev, F. Herfurth, A. Herlert,
J. Karthein, I. Kulikov, Y. A. Litvinov,
D. Lunney, V. Manea, M. Mougeot,
D. Neidherr, L. Schweikhard,
A. Welker, F. Wienholtz, K. Zuber

Mikhail Goncharov, Achim Czasch

Federal Ministry of Education and Research

> Grants No.: 05P15ODCI A 05P15HGCI

MAX-PLANCK-GESELLSCHAFT

¹²⁷⁻¹³²Cd : Strength N = 82 shell-gap ?

N=82

V. Manea, J. Karthein et al., Submitted to Phys. Rev. Lett. (2019)

HFS study of odd-A < 130 isotopes :

V. Manea, J. Karthein et al., Submitted to Phys. Rev. Lett. (2019)

^{129g,m}Cd Spin assignment :

• Resolving power $R = \frac{m}{\Delta m} > 10^6$ in 106 ms

^{129m}Cd excitation energy measured for the first time

129g,mCd state inversion

N=82 two-neutron shell-gap?

First point below Z = 50

PI-ICR:

- Q(⁸⁸Sr→⁸⁸Rb) = -5312.68(13) keV
- Q(⁸⁸Sr→⁸⁸Rb)_{AME16} = -5312.62(16) keV
- Q(⁸⁸Sr→⁸⁸Rb) = -5300(180) keV

F. Kern, AIP Conf. Proc. 164, 22 (1987)

Need for more than one Q_{EC}

