## IS590 Characterization of the low-lying 0<sup>+</sup> and 2<sup>+</sup> states of <sup>68</sup>Ni

Ch. Sotty (KU Leuven, IFIN-HH Bucharest) L.M. Fraile (U Complutense Madrid)



## Motivation: 68Ni (Z=28, N=40)



Monte Carlo Shell Model A3DA modified pf g<sub>9/2</sub> d<sub>5/2</sub> shell

Tsunoda et al., JPhys Conf Ser **445** (2013) 012028

Flavigny et al., Phys Rev C 91 (2015) 034310





### ✓ Identified 0<sup>+</sup> and 2<sup>+</sup> states

- → R. Broda *et al.*, Phys. Rev. C **86**, 064312 (2012).
- → W.F. Mueller *et al.*, Phys. Rev. C **61**, 054308 (2000).

### ✓ Position of the $0^+_2$ state in <sup>68</sup>Ni fixed: 1604 keV

- → F. Recchia et al., Phys. Rev. C 88, 041302(R) (2013).
- → S. Suchyta et al., Phys. Rev. C 89, 021301(R) (2014).
- → F. Flavigny et al., IS467, Phys. Rev. C 91 034310 (2015).

### ✓ Investigation of 0<sup>+</sup> states via 2n transfer reaction

- $\rightarrow$  <sup>66</sup>Ni(*t*,*p*)<sup>68</sup>Ni in inverse kinematics (2013)
  - Now published: F. Flavigny, J. Elseviers et al., Phys. Rev. C 99, 054322 (2019)

✓ Approach to via <sup>68</sup>Ni multiple experimental tools



### $\beta$ - $\gamma$ -E0 delayed coincidences





### 66Ni(t,p)68Ni (IS504 - Elseviers 2013)





#### **Calculations**





- "Obtain precise gamma- and electron transition intensities between the 0<sup>+</sup> and 2<sup>+</sup> states"
- ✓ Lifetime measurement of the 0<sup>+</sup> at 2511 keV

T<sub>1/2</sub> = 1.5 ns





### After the proposal

### ✓ $\beta$ -decay to <sup>68</sup>Fe (RIKEN), <sup>68</sup>Ni level lifetime (NSCL)



Physics Letters B 751 (2015) 107–112



L.M. Fraile – **GFN-UCM** 



## Experiment, part 1



#### **Estimates:**

 $\beta - \gamma$ (LaBr<sub>3</sub>(Ce)): 2663 counts/14 shifts  $\beta - \gamma$ (Ge)- $\gamma$ (LaBr<sub>3</sub>(Ce)): 40 counts/14 shifts  $\gamma$ (LaBr<sub>3</sub>(Ce)) -  $\gamma$ (LaBr<sub>3</sub>(Ce)) L.M. Fraile - GFN-UCM

#### 12 shifts granted by INTC

### Experiment, part 2

Gamma- and electron spectroscopy (Si box - Ge clover array)

- Ge eff. for 2033 keV detection: 3.4 %
- β/electron efficiency: 60%
- $\beta \gamma$ (2033): 26600 counts/experiment
- $\rightarrow$  I $\gamma$  (limit) < 0.1%
- $\beta$  (e+-e-2.5 MeV pair)  $\gamma$ (511): 43 counts

14 shifts requested



#### 12 shifts granted by INTC

6 November 2019



- ✓ A beam test + 2 (3) unsuccessful beamtimes (2014, 2015)
- ✓ Experiment done in September 2015
  - $\rightarrow$  10 shifts of effective beam time, 2 shifts several problems
  - $\rightarrow$  about 1.5 shifts on beam optimization, Ga to Mn ratio
  - $\rightarrow$  Total of ~8.5 <sup>68</sup>Mn shifts with real data
- ✓ Yields and <sup>68</sup>Mn activity
  - $\rightarrow$  Database (updated): 4.0 /  $\mu C$
  - $\rightarrow$  Proposal: 5.5 /s assuming ~1.9 uA and 70% transmission
  - $\rightarrow$  Average yield down by a factor of ~ 4-5 (1.51 /s)
  - $\rightarrow$  Peak yields: 7.5 /s, 3.8 /s for data
  - Transmission not optimal ~75%
  - Beta detector efficiency



### Analysis





FIG. 3. (Color online)  $\beta$ -gated  $\gamma$ -ray spectrum in the time window [350, 2200] ms after the proton pulse impinged on the target when (blue) lasers are tuned to resonantly ionize Mn and (red) lasers are off. The laser-off spectrum was scaled to the laser-on one using the 1313-keV peak from 136l for comparison. Symbols indicate lines associated with: 68Co decay (stars), 68Fe decay (squares), 67Fe and 67Co decay after  $\beta$ -delayed neutron emission (triangles), laser off 68Ga and 136l contaminants decay (circles).



Amount of counts in the 1514-keV – 478-keV (Clover): 41(7)

Efficiency corrected ~ 47k Amount of counts in the 2033-keV – 478-keV (Clover): 62(8) Efficiency corrected ~ 84k

## Fast timing calibrations



#### Walk corrections $\beta$ response



#### <sup>138</sup>Cs source

# Gate on "high" energy gamma at 1009 keV



Walk corrections FEPs for LaBr<sub>3</sub>(Ce)



6 November 2019



### Fast timing calibrations



Min Z (log10): 0% Max Z (log10): 100%



#### 6 November 2019



- ✓ Background subtraction (<sup>68</sup>Ga)
- ✓ Timing calibrations
- ✓ Gate selection
  - $\rightarrow$  Beta-gamma-gamma(t)
    - Optimized beta, clean Ge-bckg, LaBr<sub>3</sub>(Ce) selection...
  - $\rightarrow$  Gamma-gamma(t) 2033 478 keV LaBr<sub>3</sub>(Ce)
    - One start stop combination
    - Order of 10 counts in both







### Analysis: 68Fe





- ✓ Analysis ongoing for <sup>68</sup>Fe
  - $\rightarrow$  G.s. lifetime
  - $\rightarrow$  Relative intensities
  - $\rightarrow$  Level scheme
  - $\rightarrow$  P<sub>n</sub> value + g.s. feeding
  - $\rightarrow$  Level lifetimes