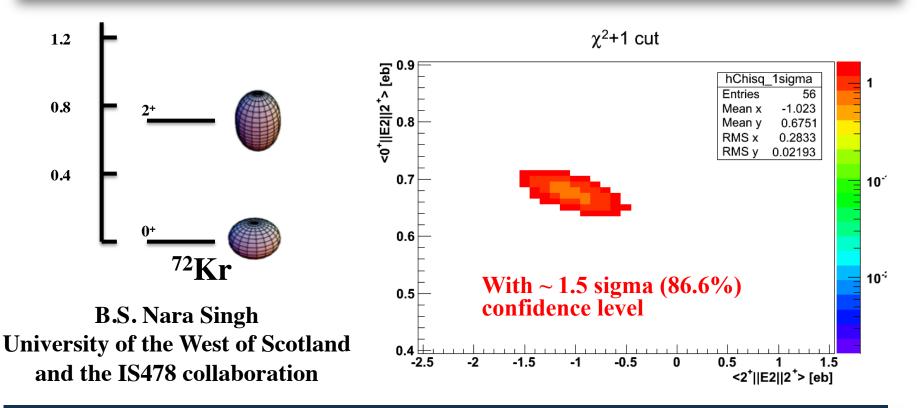

#### Status report for IS478 Shape determination in Coulomb excitation of <sup>72</sup>Kr



<u>Preliminary results indicate prolate configurations for the  $2_1^+$  state</u>

**Background and results from 2012** [Remaining 13 shifts]

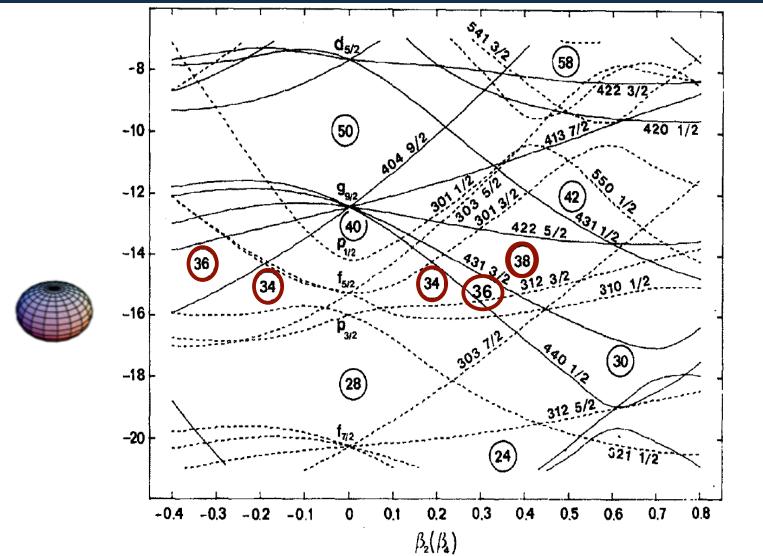
# **IS478:** The original beam time request


....

. .

|                                                                                       | Condition        | Desirable  | Manageable |
|---------------------------------------------------------------------------------------|------------------|------------|------------|
| Assumptions<br>CD coverage: 16.2° to 53.3°<br>$\varepsilon_{\gamma} = 7\%$ at 1.3 MeV | Energy (MeV/u)   | 3.1        | 2.9        |
|                                                                                       | Yield/uc         | 5000       | 2000       |
|                                                                                       | Transmission     | 8%         | 5%         |
|                                                                                       | Yield@target/2uc | ~800       | ~200       |
|                                                                                       | Beam time        | 4 + 4 days | 4 + 4 days |
|                                                                                       | Yield(710 KeV)   | ~1600      | ~400       |
|                                                                                       | Accuracy in CS   | 7%         | 8%         |

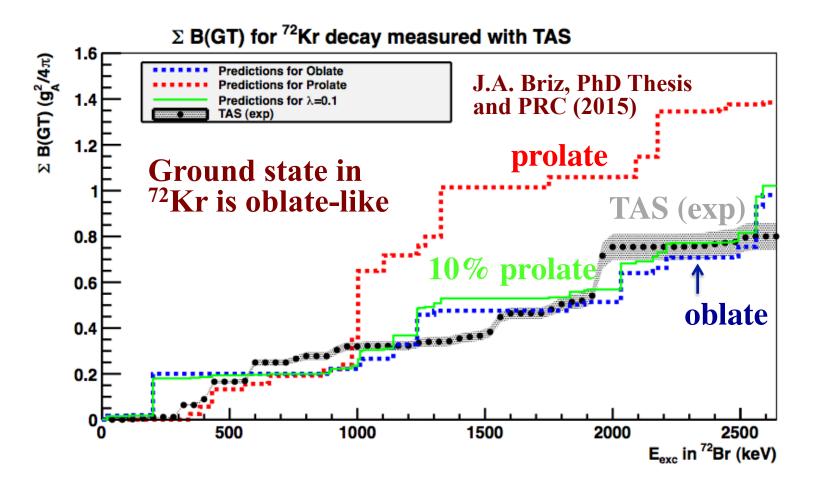
<sup>76</sup>kr at 3-3.1 MeV/u, ~10<sup>6</sup> pps at target position for 1+1 days


#### Status report for IS478 Shape determination in Coulomb excitation of <sup>72</sup>Kr



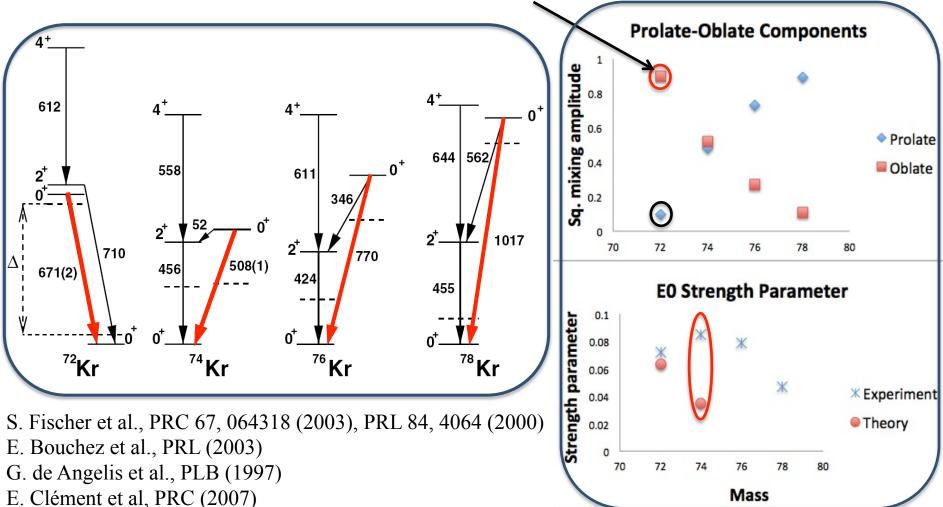
<u>Preliminary results indicate prolate configurations for the  $2_1^+$  state</u>

**Background and results from 2012** [Remaining 13 shifts]


## Shape coexistence is expected for Kr, Se isotopes

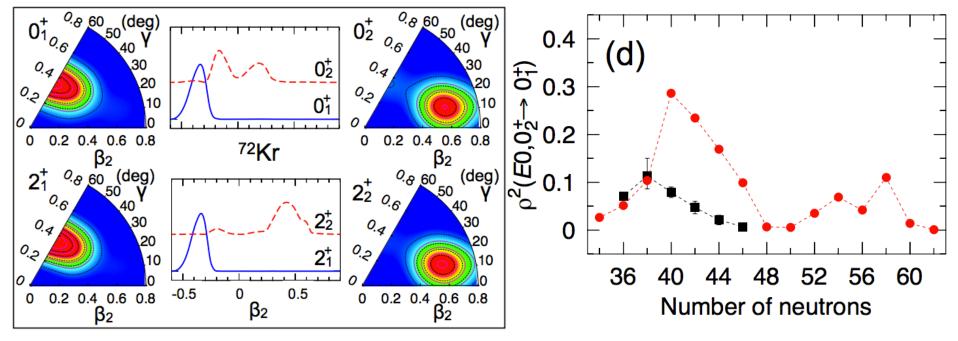


Moments of inertia, B(E2) <sup>68</sup>Se,<sup>72</sup>Kr →oblate low-lying and prolate high-lying states S. Fischer et al., PRC 67, 064318 (2003), PRL 84, 4064 (2000), A. Gade et al., PRL 95, 022502 (2005), W. Nazarewicz et al., NPA, 1985, E. Clement et al, PRC, 2007


#### Experimental studies – <sup>72</sup>Kr β-decay

A comparison between the calculated and the experimental B(GT) indicate oblate dominated ground state **-prolate mixtures** > 10% cannot be excluded.

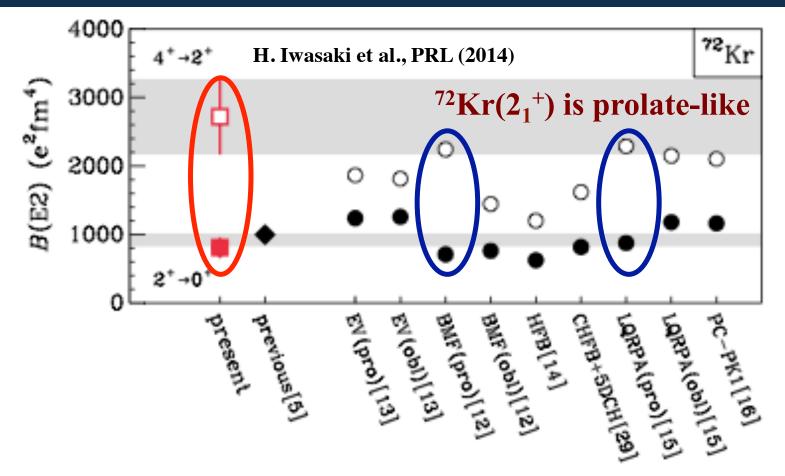



#### Experimental studies – <sup>72</sup>Kr Level structures, EM, E0 strengths

<sup>72</sup>Kr (g. s.): 90% oblate and 10% prolate components from an analysis of unperturbed and experimental 0<sup>+</sup> states



# Calculations do not reproduce data of <sup>72</sup>Kr


Symmetry Conserving Configuration Mixing (SCCM) Method + Quantum number restoration + shape mixing of axial and triaxial states + GCM + Gogny D1S



T. R. Rodr´ıguez, <u>http://arxiv.org/pdf/1408.5170v2.pdf</u>, 25 Aug 2014 and PRC (2014)

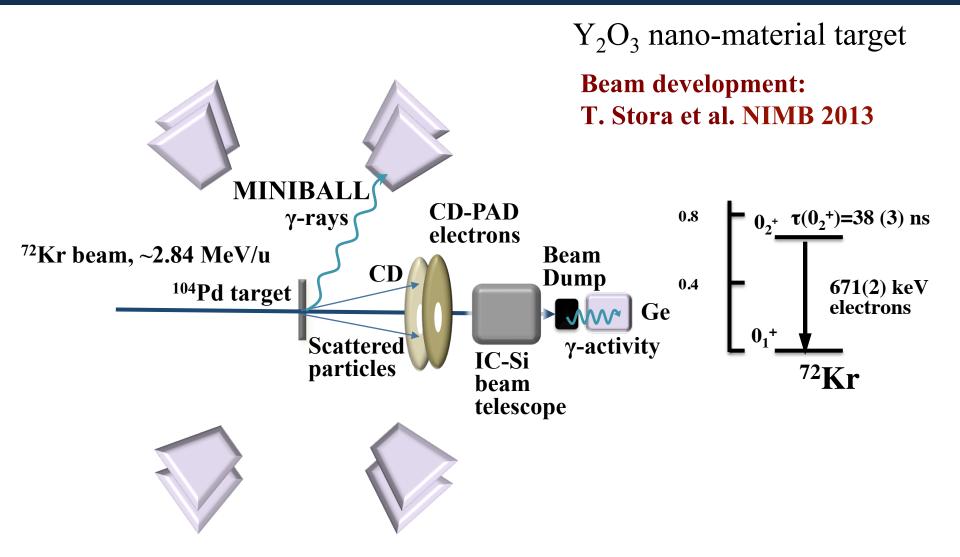
A.P. Zuker et al., PRC (2015), K. Kaneko et al., Phys. Scr. (2017)

#### Experimental studies – <sup>72</sup>Kr Lifetime measurements



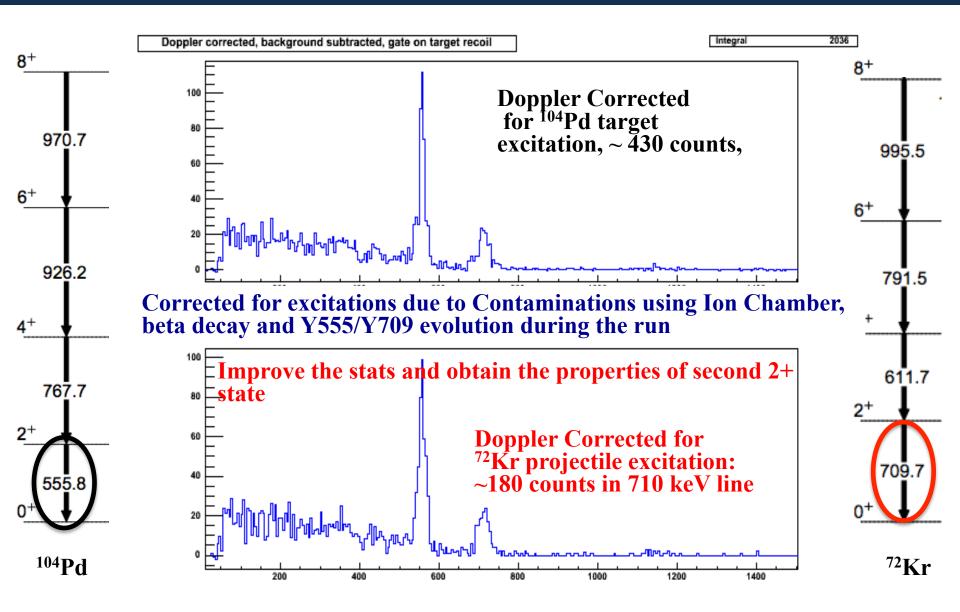
B(E2:4<sub>1</sub><sup>+</sup> $\rightarrow$ 2<sub>1</sub><sup>+</sup>)/B(E2:2<sub>1</sub><sup>+</sup> $\rightarrow$ 0<sub>1</sub><sup>+</sup>)=3.36, away both from rotor (1.43) and vibrational (2) limits, also indicate weak coupling between 2<sub>1</sub><sup>+</sup> and 0<sub>1</sub><sup>+</sup> compared to that for 4<sub>1</sub><sup>+</sup> and 2<sub>1</sub><sup>+</sup>

#### This is based on the prolate nature for the 4<sup>+</sup> state, but no direct information ....


A. Gade et al., PRL 95, 022502 (2005). H. Iwasaki et al., Phys. Rev. Lett. 112, 142502 (2014)

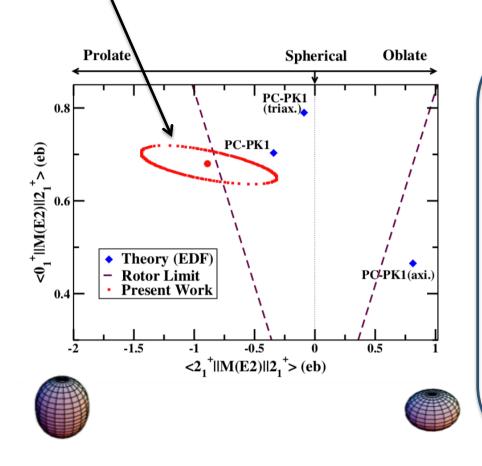
# **Present Interest** – <sup>72</sup>Kr

- <sup>72</sup>Kr: Shape coexistence expected with oblate low-lying states
- Discrepancies between data and calculations for E0 strengths.  $R_{4/2}$  and our results indicate that the 2<sup>+</sup> state is prolate etc...
- A medium mass access point for models
- <sup>70</sup>Kr: The second 2<sup>+</sup> and 4<sup>+</sup> states observed in <sup>70</sup>Kr two neutrons away from <sup>72</sup>Kr suggest shape coexistence and isospin symmetry – K. Wimmer et al. PLB 785, 441 (2018)
- A waiting point nucleus in the rp process


With the remaining shifts confirm or dispute the previously seen evidence for prolate nature for the 2<sup>+</sup> state and obtain properties of the second 2<sup>+</sup> state to provide further understanding of shape coexistence in krypton isotopes

## 2012: IS478 with Miniball + CD + PAD Setup




Electron detection from the decay of second  $0_2^+$  state in <sup>72</sup>Kr using a CD-PAD detector

# CD gated gamma spectra



# **Comparison with calculations – Preliminary**

First Direct Evidence for the prolate 2<sub>1</sub><sup>+</sup> state



Stae-of-the-art 5DCH calculations based on several popularly used nonrelativistic and relativistic EDF. Role of triaxiality can be seen

*Conclusion*: Theoretical calculations are non conclusive, possibly far from having predictability and the experiments such as this and those to measure the properties of the second 2<sup>+</sup> state will play crucial roles.

Theory (EDF): by J.M. Yao

B.S. Nara Singh et al. to be resubmitted

# For remaining 13 shifts

- Thicker target and higher energy (3.1 MeV/u)– improves statistics by a factor of 3.
- Definitive conclusions on shape, confirmation of excited 2<sup>+</sup> state (by confirming the presence of 0.44 and 1.150 MeV gamma rays), better understanding of the ground and excited 0<sup>+</sup> states.
- Additional ME involving this  $2_2^+$ state that will provide insights into the shape coexistence in <sup>72</sup>Kr and in general shape dynamics in the A~70 region of open shell nuclei.

# **IS478:** The original beam time request

....

. .

|                                                                                       | Condition        | Desirable  | Manageable |
|---------------------------------------------------------------------------------------|------------------|------------|------------|
| Assumptions<br>CD coverage: 16.2° to 53.3°<br>$\varepsilon_{\gamma} = 7\%$ at 1.3 MeV | Energy (MeV/u)   | 3.1        | 2.9        |
|                                                                                       | Yield/uc         | 5000       | 2000       |
|                                                                                       | Transmission     | 8%         | 5%         |
|                                                                                       | Yield@target/2uc | ~800       | ~200       |
|                                                                                       | Beam time        | 4 + 4 days | 4 + 4 days |
|                                                                                       | Yield(710 KeV)   | ~1600      | ~400       |
|                                                                                       | Accuracy in CS   | 7%         | 8%         |

<sup>76</sup>kr at 3-3.1 MeV/u, ~10<sup>6</sup> pps at target position for 1+1 days

#### Status report on IS478:Shape determination in Coulomb excitation of <sup>72</sup>Kr

Rare shape dynamics at low excitation energy in the nucleus <sup>72</sup>Kr Submitted to Nature Communications – to be resubmitted

B.S. Nara Singh<sup>1,2</sup>, R. Wadsworth<sup>1</sup>, A.N. Andreyev<sup>1,3</sup>, C.J. Barton<sup>1</sup>, B. Bastin<sup>4</sup>,

C. Bauer<sup>5</sup>, A. Blazhev<sup>6</sup>, S. Bönig<sup>5</sup>, M.J.G. Borge<sup>7,8</sup>, J.A. Briz<sup>8</sup>, T.S. Brock<sup>1</sup>,

P.A. Butler<sup>9</sup>, J. Butterworth<sup>1</sup>, E. Clément<sup>7</sup>, D.M. Cullen<sup>2</sup>, A. Damyanova<sup>10</sup>,

T. Davinson<sup>11</sup>, H. De Witte<sup>4</sup>, L.M. Fraile<sup>7</sup>, L.P. Gaffney<sup>9</sup>, J. Henderson<sup>1,12</sup>

M. Huyse<sup>4</sup>, D.G. Jenkins<sup>1</sup>, P. Joshi<sup>1</sup>, N. Kesteloot<sup>4</sup>, J. Konki<sup>7</sup>, Z.P. Li<sup>13</sup>, R. Lutter<sup>14</sup>,

D.R. Napoli<sup>15</sup>, A.J. Nichols<sup>1</sup>, J. Pakarinen<sup>7,16,17</sup>, A. Poves<sup>18</sup>, E. Rapisarda<sup>7</sup>, P. Reiter<sup>6</sup>,

P. Ruotsalainen<sup>12,16,17</sup>, M. Scheck<sup>9,19</sup>, M. Seidlitz<sup>6</sup>, B. Siebeck<sup>6</sup>, L.F. Sinclair<sup>1</sup>

T. Stora<sup>7</sup>, M.J. Taylor<sup>1</sup>, J. Van de Walle<sup>7</sup>, P. Van Duppen<sup>4</sup>, M.J. Vermeulen<sup>1</sup>,

N. Warr<sup>6</sup>, F. Wenander<sup>7</sup>, K. Wrzosek-Lipska<sup>4</sup>, J.M. Yao<sup>13,20</sup>, N. Yavuzkanat<sup>1</sup>,

M. Zielińska<sup>21</sup> and the REX-ISOLDE and the MINIBALL Collaboration

# Thanks

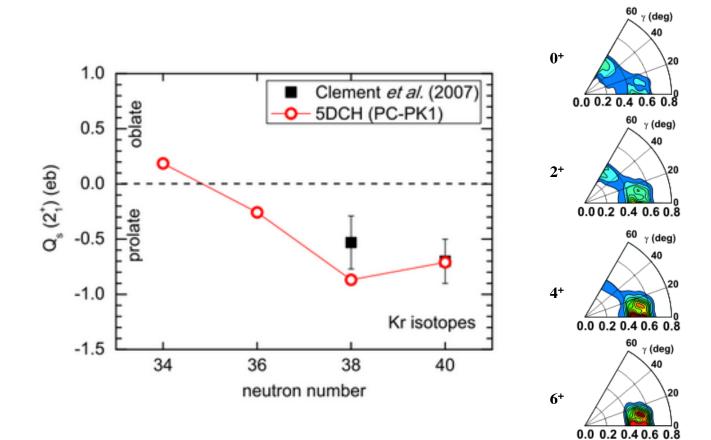
## Some points on why we need new measurements

- Having the direct and indirect evidence on the prolate nature for the 2<sup>+</sup> state, can we take help from existing mean-field/shell model based theories to look into the true nature of the ground state ?
- If B(GT), B(E2), T(E0) and level structure data indeed helps concluding shape configurations of the 0<sup>+</sup> and 2<sup>+</sup> states in <sup>72</sup>Kr Can we expect predictive power of theories for a) nearby nuclei and b) beyond ?
- What role the proton-neutron interaction plays in this region? can we clearly attribute the shape co-existence phenomena to this interaction?.
- Does triaxiality play a role beyond the 2<sup>+</sup><sub>1</sub> state?
- Can we pin-down the change in the mean-filed that occurs as we go from <sup>70</sup>Br to <sup>72</sup>Kr

# A~70 region

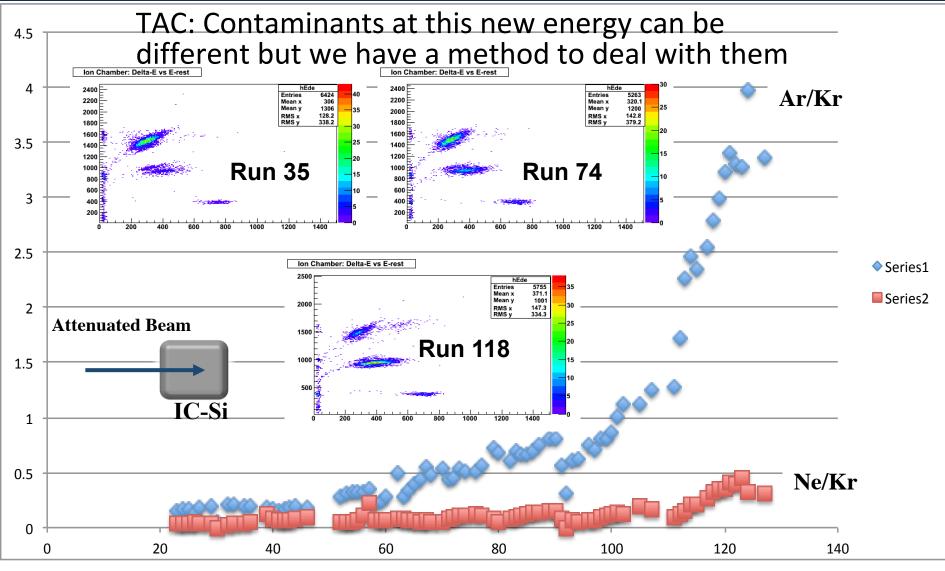
#### Moments of inertia, B(E2) values on <sup>68</sup>Se,<sup>72</sup>Kr →oblate low-lying and prolate high-lying states S. Fischer et al., PRC 67, 064318 (2003), PRL 84, 4064 (2000)

A. Gade et al., PRL 95, 022502 (2005)

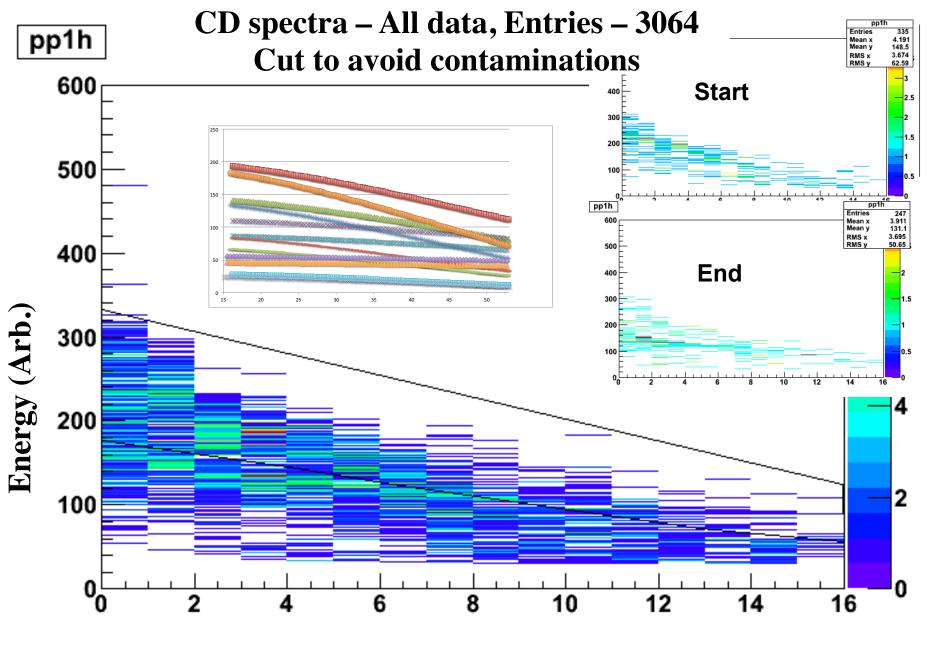

Coulomb energy differences,  ${}^{70}$ Se, ${}^{70}$ Br  $\rightarrow$  prolate ( $\beta_2$ =0.18) to prolate (0.33) shape change B.S. Nara Singh et al., Submitted to PRC Rapid com.

#### Re-orientation effect in low energy Coulex on $^{70}$ Se $\rightarrow$ prolate 2<sup>+</sup>state for $^{70}$ Se A.M. Hurst et al., PRL 98, 072501 (2007)

#### > No excited 0<sup>+</sup> state found in <sup>68, 70</sup>Se


> No direct evidence for oblate ground/low-lying states

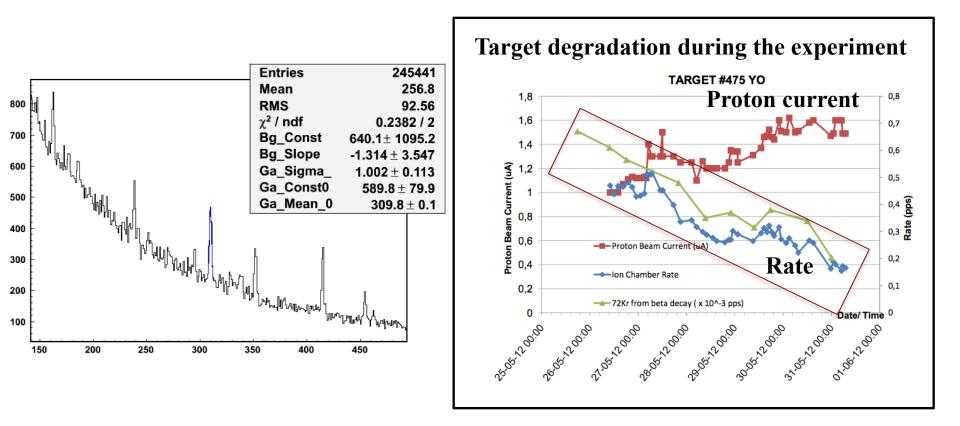
#### **Comparison with calculations – Preliminary**




ß

## Contaminations




File number



**Strip** 

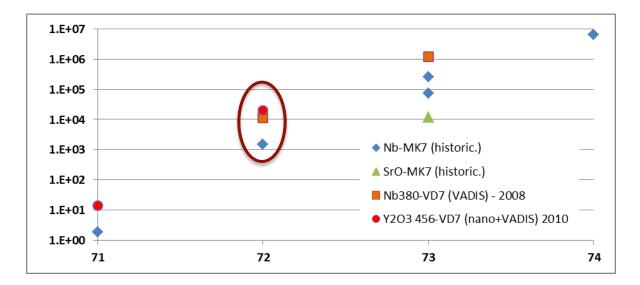
## <sup>72</sup>Kr beta decay at Miniball

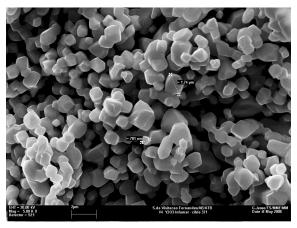
#### TAC: Drop by a factor of 10 not understood



Zakopane Conference on Nuclear Physics 31Aug-7 Sep 2014

**B.S. Nara Singh , University of York** 


#### <sup>72</sup>Kr beam development - e.g. see T. Stora et al. NIMB 2013


TAC: Molten target versus Y2O3 nano-material target **ZrO2-MK7 FEBIAD unit, not sufficient to reach 800 pps at Miniball** 

S ZrO2-MK7 FEBIAD new unit 2 times improvement, Nb380 -MK7 FEBIAD new unit 9 times improvement, (2008)

S Y2O3 456 – VD7 FEBIAD unit further improvement

New targets based on nano-materials and new ion sources (VADIS) FEBIAD type





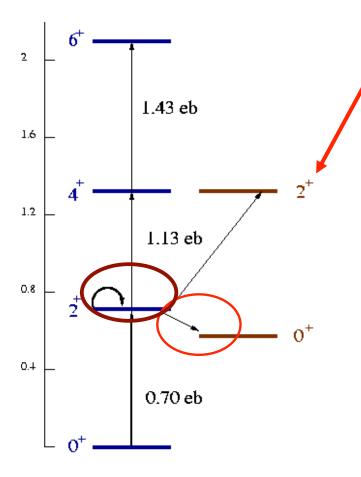
Zakopane Conference on Nuclear Physics 31Aug-7 Sep 2014

B.S. Nara Singh, University of York

| Isotope          | M <sub>02</sub> (eb) | M <sub>02</sub> (eb) | M <sub>22</sub> (eb) | ρ² <b>(Ε0)</b> | T(E2)/T(E0) |
|------------------|----------------------|----------------------|----------------------|----------------|-------------|
| <sup>78</sup> Kr | 0.80(4)              |                      |                      | 0.047 (13)     | 3360 (150)  |
| <sup>76</sup> Kr | 0.849 (6)            | -0.490 (11)          | -0.9 (3)             | 0.079 (11)     | 490 (19)    |
| <sup>74</sup> Kr | 0.782 (7)            | 0.68 (4)             | -0.7 (3)             | 0.085 (19)     |             |
| <sup>72</sup> Kr | 0.71 (9)             | ??                   | ??                   | 0.072 (6)      | 0           |

Unlikely ??  $M_{22}$  <  $M_{02}$ 

Likely !! M<sub>22</sub> > M<sub>02</sub>


 $M_{22}$  > 0.71 eb,  $M_{02}$  < 0.71 eb

#### Assumed

#### Unlikely

M<sub>02</sub> ~ 0.70 eb





M<sub>22</sub> < < M<sub>02</sub>
→ Second 2<sup>+</sup> would be observed
→ Re-orientation effect and the depletions at similar levels.
→ More accurate B(E2) value

An independent B(E2) value + Angular distributions  $\rightarrow$  determination of the shape

Interpretation may have to be done for two possible scenarios ??.