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RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation

RDF user guide, cheat-sheet

The HEP DataFrame

▸ strive for a simple programming model 
based on declarative programming

▸ expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

▸ transparently benefit from multi-core hardware

▸ make common tasks simple, complex tasks possible

▸ consistent support for HEP languages: C++ and Python

https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
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RDataFrame in a Nutshell
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Analysis as Computation Graphs

import ROOT
df  = ROOT.RDataFrame(dataset);
df2 = df.Filter("x > 0")

.Define("r2", "x*x + y*y");

rHist = df2.Histo1D("r2");

g = df2.Graph("x","y")
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PyRDF: Distributed RDataFrame

 d = RDataFrame(dataset)
 f = d.Define(...)
      .Define(...)
      .Filter(...)

 h1 = f.Histo1D(...)
 h2 = f.Histo2D(...)
 g   = f.Graph(...)

► The RDataFrame programming model is implicitly parallel
● Runs on multi/many core architectures
● But it can also exploit distributed infrastructures !

► PyRDF: Python library on top of ROOT RDataFrame
● Enables distributed execution of RDataFrame workflows
● Modular design: multiple backends can be plugged in

► Spark backend implemented: submits RDataFrame computations to Spark clusters
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https://github.com/JavierCVilla/PyRDF
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Spark Backend
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▸ Map-reduce workflow where every mapper runs the RDataFrame computation graph 
on a range of collision events

▸ Run analysis in C++ with Spark
● Exploiting its Python API and PyROOT

Spark Cluster

Executor

Spark Backend
Mapper

Driver

px py pz eMake ranges

Read ranges

Schedule tasks

Reducer

https://indico.cern.ch/event/773049/contributions/3476062/


Features Overview
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Programming Model

▸ Minimal changes on user’s code
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import ROOT

# Initialize RDataFrame object
df = ROOT.RDataFrame(dataset)

# Define operations
df2 = df.Filter("x > 0")

   .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

# Display histogram
rHist.Draw()
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Programming Model

▸ Minimal changes on user’s code
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import ROOT

# Initialize RDataFrame object
df = ROOT.RDataFrame(dataset)

# Define operations
df2 = df.Filter("x > 0")

   .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

# Display histogram
rHist.Draw()

import PyRDF

# Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

# Define operations
df2 = df.Filter("x > 0")

   .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

# Display histogram
rHist.Draw()

RDataFrame via PyRDF
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API: Backend Selection

▸ Multi-backend support
● Dynamic switch of backends

11

# Select Spark backend
PyRDF.use("spark")

# Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

# Operations run in Spark
df2 = df.Filter("x > 0")

  .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")
# Trigger event loop
sd = rHist.GetStdDev()

# Switch back to Local backend
PyRDF.use("local")

# Operations run locally
df3 = df2.Filter("r2 % 2 == 0")
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API: C++ Headers and Libraries

▸ Include C++ headers and libraries
● PyRDF makes them available in the distributed nodes
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# Add analysis headers and libraries
PyRDF.include_headers("myfunc.hxx")
PyRDF.include_shared_libraries("myfunc.so")

# Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

# Operations run in distributed backend
df2 = df.Define("res", "myfunc(x,y)")

Calls from JITted code

bool myfunc(int a, int b) {
    return a < b;
}

myfunc.hxx

bool myfunc(int a, int b);

myfunc.cxx
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▸ RDataFrame Snapshot allows to save data to a file
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new_df = df.Filter("x > 0")

           .Define("z", "sqrt(x*x + y*y)")

           .Snapshot("tree", "newfile.root")

RDataFrame Snapshot

We filter the data, add a new column, and then save 
everything to file
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import PyRDF
PyRDF.use("spark")

# RDF Operations ...

new_df = df.Snapshot(remotepath)

Entry ranges

Distributed Snapshot

14

14

Mapper1 - 100

901 - 1000 Write back to remote path

Mapper

Mapper

. . .

Path to a remote file:
root://eosuser.cern.ch//mypath/myfile.root

...myfile_1_100.root

...myfile_101_200.root

...myfile_901_1000.root

101 - 200

. . .



Use Case
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Real Example: TOTEM Analysis

► TOTEM Experiment analysis 
coded with RDataFrame

► Spark backend

► 4.7TB dataset on EOS

► Get to physics results faster!
● From 13 hours to 10 minutes

► Launched from SWAN to a 
dedicated Spark cluster

16
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▸ Bridge the gap between interactive 
computing and distributed data 
processing

▸ Automatically appears when a 
Spark job is submitted from a cell

▸ Progress bars, task timeline, 
resource utilisation

Distributed Monitoring

Code here!

17

https://github.com/krishnan-r/sparkmonitor
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Useful for Debugging

18
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▸ The increase in physics data volumes and complexity is pushing software at 
CERN
● Adoption of Spark and other big data technologies still in its early stages

▸ Adopting new programming paradigms takes time
● Declarative analysis
● Pushing computations to data

▸ RDataFrame and PyRDF try to combine:
● Easy to use programming model
● Implicit parallelization (local, distributed)

Conclusions

19



Thank you!



Backup
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Reasons to run distributedly

22sources: CMS, ATLAS

Today Today

▸ The amount of data processed by HEP scientists is going to increase drastically

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://indico.cern.ch/event/808335/contributions/3365096/
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▸ Delay computations as much as possible
▸ Avoid data format conversion
▸ Change the backend dynamically
▸ Minimal changes on user’s code

● Changing the mindset of programmers takes time
● Keep the same interface offered by RDataFrame in Python
● Support local as a backend

PyRDF: Main design principles

23

PyRDF
(Python)

PyROOT
(Python / C++)

ROOT
(C++)

Proxy
objects

Proxy
objects
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Backend Configuration

▸ Entrypoint to backend configuration
● Explicit parameters
● Accept all backend parameters

24

import PyRDF

# Configure Spark backend
PyRDF.use("spark", {
           "npartition": 4,

  "spark.executor.instances": 5
})

# Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)
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The SWAN Service

► SWAN: Service for Web-based Analysis

► Interactive computing platform for scientists
● Based on Jupyter notebooks

► Analysis with only a web browser

► Easy sharing of results

► Integrated with CERN resources
● Storage, software and computing

https://swan.web.cern.ch

25

https://swan.web.cern.ch/


Distributed data analysis with ROOT RDataFrame, CHEP 2019

SWAN Pillars

Storage

Computing

Software
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https://cernbox.web.cern.ch/
http://information-technology.web.cern.ch/services/eos-service
https://cernvm.cern.ch/portal/filesystem
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SWAN Interface: Notebooks

27
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Integration with Spark

Spark Cluster

Spark Master

Spark Executor

Task

User Notebook

Task Task
Spark Driver

Offload computations to 
pluggable resources

28
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Spark Connector

Configure Spark and 
connect to cluster 

with a click

29
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Spark Monitor

Allow for 
optimizations
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Useful for Debugging
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▸ Easy to spot sources of inefficiencies
● Optimize use of resources (cores)

▸ Led to a better way to manage the task ranges 
● ROOT I/O: prefetch/cache only within task ranges
● Parallelize generation of ranges

Underutilization


