
https://root.cern

ROOT
Data Analysis Framework

Distributed Data Analysis
with ROOT RDataFrame

E. Tejedor, J. Cervantes, V. E. Padulano

https://root.cern

Introduction

Distributed data analysis with ROOT RDataFrame, CHEP 2019 3

RDataFrame, officially part of ROOT since v6.14, tries to incarnate
these ideas in the context of HEP analyses and HEP data manipulation

RDF user guide, cheat-sheet

The HEP DataFrame

▸ strive for a simple programming model
based on declarative programming

▸ expose modern, elegant interfaces that are
easy to use correctly and hard to use incorrectly

▸ transparently benefit from multi-core hardware

▸ make common tasks simple, complex tasks possible

▸ consistent support for HEP languages: C++ and Python

https://doi.org/10.5281/zenodo.260230
https://root.cern/doc/master/classROOT_1_1RDataFrame.html

Distributed data analysis with ROOT RDataFrame, CHEP 2019

RDataFrame in a Nutshell

4

p_x p_y p_z eta myvar

Range
Filter

Define

ROOT
CSV

Apache Arrow
SQLite

...

histograms, profiles

data reductions
(mean, sum,..)

new ROOT files

any user-defined
operation

cut-flow reports

Datasource

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Analysis as Computation Graphs

import ROOT
df = ROOT.RDataFrame(dataset);
df2 = df.Filter("x > 0")

.Define("r2", "x*x + y*y");

rHist = df2.Histo1D("r2");

g = df2.Graph("x","y")

5

filter
x > 0

define
r2 = x² + y²

data
x, y

TH1D
r2

TGraph
x, y

data
transformation
result

Internal computation graph

Distributed data analysis with ROOT RDataFrame, CHEP 2019

PyRDF: Distributed RDataFrame

 d = RDataFrame(dataset)
 f = d.Define(...)
 .Define(...)
 .Filter(...)

 h1 = f.Histo1D(...)
 h2 = f.Histo2D(...)
 g = f.Graph(...)

► The RDataFrame programming model is implicitly parallel
● Runs on multi/many core architectures
● But it can also exploit distributed infrastructures !

► PyRDF: Python library on top of ROOT RDataFrame
● Enables distributed execution of RDataFrame workflows
● Modular design: multiple backends can be plugged in

► Spark backend implemented: submits RDataFrame computations to Spark clusters

Local

…

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU

…
…

…

… CPU
…
…

…

… CPU

C
om

pu
ta

tio
n

G
ra

ph

Code here!

6

https://github.com/JavierCVilla/PyRDF

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Spark Backend

7

▸ Map-reduce workflow where every mapper runs the RDataFrame computation graph
on a range of collision events

▸ Run analysis in C++ with Spark
● Exploiting its Python API and PyROOT

Spark Cluster

Executor

Spark Backend
Mapper

Driver

px py pz eMake ranges

Read ranges

Schedule tasks

Reducer

https://indico.cern.ch/event/773049/contributions/3476062/

Features Overview

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Programming Model

▸ Minimal changes on user’s code

9

import ROOT

Initialize RDataFrame object
df = ROOT.RDataFrame(dataset)

Define operations
df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

Display histogram
rHist.Draw()

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Programming Model

▸ Minimal changes on user’s code

10

import ROOT

Initialize RDataFrame object
df = ROOT.RDataFrame(dataset)

Define operations
df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

Display histogram
rHist.Draw()

import PyRDF

Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

Define operations
df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")

Display histogram
rHist.Draw()

RDataFrame via PyRDF

Distributed data analysis with ROOT RDataFrame, CHEP 2019

API: Backend Selection

▸ Multi-backend support
● Dynamic switch of backends

11

Select Spark backend
PyRDF.use("spark")

Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

Operations run in Spark
df2 = df.Filter("x > 0")

 .Define("r2", "x*x + y*y")
rHist = df2.Histo1D("r2")
Trigger event loop
sd = rHist.GetStdDev()

Switch back to Local backend
PyRDF.use("local")

Operations run locally
df3 = df2.Filter("r2 % 2 == 0")

Sp
ar
k

Lo
ca

l

Move to local
backend

Distributed data analysis with ROOT RDataFrame, CHEP 2019

API: C++ Headers and Libraries

▸ Include C++ headers and libraries
● PyRDF makes them available in the distributed nodes

12

Add analysis headers and libraries
PyRDF.include_headers("myfunc.hxx")
PyRDF.include_shared_libraries("myfunc.so")

Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

Operations run in distributed backend
df2 = df.Define("res", "myfunc(x,y)")

Calls from JITted code

bool myfunc(int a, int b) {
 return a < b;
}

myfunc.hxx

bool myfunc(int a, int b);

myfunc.cxx

Distributed data analysis with ROOT RDataFrame, CHEP 2019

▸ RDataFrame Snapshot allows to save data to a file

13

new_df = df.Filter("x > 0")

 .Define("z", "sqrt(x*x + y*y)")

 .Snapshot("tree", "newfile.root")

RDataFrame Snapshot

We filter the data, add a new column, and then save
everything to file

Distributed data analysis with ROOT RDataFrame, CHEP 2019

import PyRDF
PyRDF.use("spark")

RDF Operations ...

new_df = df.Snapshot(remotepath)

Entry ranges

Distributed Snapshot

14

14

Mapper1 - 100

901 - 1000 Write back to remote path

Mapper

Mapper

. . .

Path to a remote file:
root://eosuser.cern.ch//mypath/myfile.root

...myfile_1_100.root

...myfile_101_200.root

...myfile_901_1000.root

101 - 200

. . .

Use Case

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Real Example: TOTEM Analysis

► TOTEM Experiment analysis
coded with RDataFrame

► Spark backend

► 4.7TB dataset on EOS

► Get to physics results faster!
● From 13 hours to 10 minutes

► Launched from SWAN to a
dedicated Spark cluster

16

Distributed data analysis with ROOT RDataFrame, CHEP 2019

▸ Bridge the gap between interactive
computing and distributed data
processing

▸ Automatically appears when a
Spark job is submitted from a cell

▸ Progress bars, task timeline,
resource utilisation

Distributed Monitoring

Code here!

17

https://github.com/krishnan-r/sparkmonitor

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Useful for Debugging

18

Distributed data analysis with ROOT RDataFrame, CHEP 2019

▸ The increase in physics data volumes and complexity is pushing software at
CERN
● Adoption of Spark and other big data technologies still in its early stages

▸ Adopting new programming paradigms takes time
● Declarative analysis
● Pushing computations to data

▸ RDataFrame and PyRDF try to combine:
● Easy to use programming model
● Implicit parallelization (local, distributed)

Conclusions

19

Thank you!

Backup

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Reasons to run distributedly

22sources: CMS, ATLAS

Today Today

▸ The amount of data processed by HEP scientists is going to increase drastically

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://indico.cern.ch/event/808335/contributions/3365096/

Distributed data analysis with ROOT RDataFrame, CHEP 2019

▸ Delay computations as much as possible
▸ Avoid data format conversion
▸ Change the backend dynamically
▸ Minimal changes on user’s code

● Changing the mindset of programmers takes time
● Keep the same interface offered by RDataFrame in Python
● Support local as a backend

PyRDF: Main design principles

23

PyRDF
(Python)

PyROOT
(Python / C++)

ROOT
(C++)

Proxy
objects

Proxy
objects

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Backend Configuration

▸ Entrypoint to backend configuration
● Explicit parameters
● Accept all backend parameters

24

import PyRDF

Configure Spark backend
PyRDF.use("spark", {
 "npartition": 4,

 "spark.executor.instances": 5
})

Initialize RDataFrame object
df = PyRDF.RDataFrame(dataset)

Distributed data analysis with ROOT RDataFrame, CHEP 2019

The SWAN Service

► SWAN: Service for Web-based Analysis

► Interactive computing platform for scientists
● Based on Jupyter notebooks

► Analysis with only a web browser

► Easy sharing of results

► Integrated with CERN resources
● Storage, software and computing

https://swan.web.cern.ch

25

https://swan.web.cern.ch/

Distributed data analysis with ROOT RDataFrame, CHEP 2019

SWAN Pillars

Storage

Computing

Software

26

https://cernbox.web.cern.ch/
http://information-technology.web.cern.ch/services/eos-service
https://cernvm.cern.ch/portal/filesystem

Distributed data analysis with ROOT RDataFrame, CHEP 2019

SWAN Interface: Notebooks

27

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Integration with Spark

Spark Cluster

Spark Master

Spark Executor

Task

User Notebook

Task Task
Spark Driver

Offload computations to
pluggable resources

28

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Spark Connector

Configure Spark and
connect to cluster

with a click

29

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Spark Monitor

Allow for
optimizations

30

Distributed data analysis with ROOT RDataFrame, CHEP 2019

Useful for Debugging

31

▸ Easy to spot sources of inefficiencies
● Optimize use of resources (cores)

▸ Led to a better way to manage the task ranges
● ROOT I/O: prefetch/cache only within task ranges
● Parallelize generation of ranges

Underutilization

