Machine Learning with ROOT/TMVA

Stefan Wunsch for the ROOT team

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

TMVA in the current ML landscape

e TMVA provides implementations of a vast amount of ML : f—i " ,M‘_Aj
methods collected over the last decade -
e Todays developments from the industry shifts the scope GBOOSt

of TMVA towards specialization on HEP specific

requirements an

Google Trends: machine learning

W/M ¢ TensorFlow
—— Keras

Interoperability with the ML ecosystem

ROOT 6.16

: # Heavy-1lifting in C++ and remote access of data
° Cruglal feature for ML . df = ROOT.RDataFrame("Events", "http://file.root")
Moving data from ROOT files to Python and Filter("x1 > 0")
vice versa .Define("x3", "x1 % x2")
o # Read-out as numpy arrays
e Writing numpy arrays supported through vars = ("x1", "x2", "x3")
MakeNumpyDataF rame feature cols = df.AsNumpy(vars)
) _) o # Create typical ML input data structure
e Further information about the interoperability x = numpy.stack([cols[v] for v in vars])
of ROOT with the scientific Python ecosystem

. . . # Push data to scipy ecosystem
in this talk: pdf = pandas.DataFrame(cols)

Put links to the talks/posters

Modern interfaces

e Modern high-level interfaces ROOT 6.20
- (experimental)
Functional

([]
e Thread-safe
e Support C++ STL container . el
// Construct mode
° ++
Full C anciPythor1SLu)port TMVA: :RBDT bdt("myBDT", "path to weight file");
e Example tutorial here
// Single-event inference
e Introduce RTensor as replacement for auto y = bdt.Compute({1.0, 2.8, ...});
missing container of multi-dimensional
arrays in C++ // Batch inference

TMVA: :RTensor<float> x(data, shape);

° i her her
See tutorials here and here 2uto y2 = bdt.Compute(x);

e Keep track of ML sub-group in
Standard C++ Foundation

e RTensor allows for seamless integration
with numpy arrays in Python
e Interoperable with ML ecosystem

C++ SG19, Machine Learning: Improve on C++'s ability to support [...] array, matrix, linear algebra, [...] 4

https://root.cern/doc/master/tmva003__RReader_8C.html
https://root.cern.ch/doc/master/tmva001__RTensor_8C.html
https://root.cern.ch/doc/master/tmva002__RDataFrameAsTensor_8C.html
https://isocpp.org/std/the-committee

ntegration with modern ROOT facilities

e Integration with ROOT's implicit
multi-threading paradigm

e ROOT::EnableImplicitMT() // Run workflow on multiple threads
e Correct sharing of resources ROOT: :EnableImplicitMT();
e Already supported by TMVA: :DNN

and method BDT // Construct model

TMVA: :RBDT bdt("myBDT", "path to weight file");
e Tightintegration with ROOT : :RDataFrame

// Process data in parallel using RDataFrame
ROOT: :RDataFrame df("Events", "file.root");

e Each method is standalone but follows a auto df2 = df.Define("bdt_output”,
common interface TMVA: :Compute<2, float>(bdt),
e sklearn-like paradigm {"var1", "var2"});

e Simple integration in modern C++

Fast decision tree inference

e Inference engine taking model parameters External training and model conversion

from externally trained models . ,
xgb = xgboost.BDTClassifier(options)

xgb.fit(x, vy)

e Features

e Simple to use from Python and C++ ROOT.TMVA.SaveXGBoost(xgb, "myBDT", "file.root")
e Thread-safe

e Zero-copy Python application

e Fast for single event and batch

bdt = ROOT.TMVA.RBDT("myBDT", "http://file.root")

inference x = numpy.array(...)
. y = bdt.Compute(x)
e Comingsoon
e Multi-threading support for batch C++ application
m(;‘zre?ncel ; | TMVA: :RBDT bdt("myBDT", "http://file.root");
e Additional converters for externa auto y1 = bdt.Compute({1.0, ...});
frameworks

auto x = TMVA: :RTensor<float>(data, shape);
ROOT 6.20 auto y2 = bdt.Compute(x);
(experimental) 6

Fast BDT inference: Performance

e Performance measurement of a model with T XGBoost
e 500 trees New BDT inf
e 3 maximum depth oW !n erence o
e 10input variables I New BDT inference (jitted)
. . - . . w 16—
e Leverages successfully just-in-time compilation S °f
e Using cling with optimization level 3 c 14 I I l
e Optimize inference code at construction time e F
o 12
based on model parameters 3
o 10f
e Improved runtime performance in Python E
workflow compared to XGBoost ~ 8f
e Batch evaluation on a single thread of
e 4x faster than XGBoost for 10° events -
e Jitting provides additional 40% speed-up =
improving to 6x faster inference - . .
2
e See our poster for the technical details F L 1 g i cgiql E 0§51 ol
Put details here how to find the poster 10* 10° 10°

Number of events
Report of the R&D project by Luca Zampieri 7

http://cds.cern.ch/record/2688585/

Fast neural networks

image : 32x32 - 4 Conv. layers 12x(3x3)

e Main focus of the industry tools o000
e Large models S § joooo| Reacuem
e Batch inference S 5 T
e Fast training workflow S g o000l e replacéd
e Accessible through Python ecosystem S 4§ 20000f
Q. -
: . << < 10000[
e Focus of TMVA in upcoming developments T .
e Minimal latency / fast single event inference 20 040 10 2ac 10°
e Seamless integration in Python and C++
e Sustainability and reproducibility | moEe e e
e See our poster for more details 50000 [
g —e— TMVA (Cuda only) /
m § 40000:—.— TAMVA (Cudnn)
e New developments for neural networks £ 7 |
e Integration of cuDNN I R o be replaced
e Support for LSTM and GRU layers g : zoooo;/
- 10000;
ROOT 6.20 ‘., - .
20 30 40 10* 2x10? 10°

Batch Size

Paradigm of future TMVA developments

Modularize
Interoperate with the ML ecosystem
Specialize on HEP peculiarities

Future
developments

Example Modernize TMVA GUI

Example Generic data-loader for ML workflows

Move from monolithic design to modular
toolbox of visualization tools

Example HEP peculiarity:

Statistical comparison of distributions

Generator doing batching and shuffling
from ROQT files on the fly
Allows for training on huge datasets

Typical TMVA GUI visualization

TMVA overtraining check for classifier: BDT B ~, TMVA,
-§ i §Ign'al ({estI sahp'ls) R S'Ign'al (&rai'nln'g sﬁmﬁle)' k ':
% 6 7] Background (test sample) | | * Background (training sample)—]
E Kol test: signal (backg) probability = 0.041 (0.049) gl
s 5

||l|||||||||ll|||l

vl b ber byaaa e

U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

RTTTTTTT

BDT response

Example ML workflow loading batches

df = ROOT.RDataFrame("Events", "http://file.root")

generator = TMVA::BatchGenerator(df, cols, batchSize)

for step in gradientSteps:
X = generator()
model.fit(x)

Summary

e New features
e Modern interfaces for inference
e Integration with modern ROOT facilities
e Fastinference for decision trees
e Handling of multi-dimensional arrays in C++
and interoperability with Python
e Facilitate integration with the ML ecosystem

Paradigm of future TMVA developments
e Modularize
e Interoperate with the ML ecosystem
e Specialize on HEP peculiarities

e Tutorials showing a full ML workflow using the new tools
Data loading and preprocessing

External training and model conversion

Testing and application in Python

Application in C++

10

http://foo
http://foo
http://foo
http://foo

