
https://root.cern

ROOT
Data Analysis Framework

Machine Learning with ROOT/TMVA

Stefan Wunsch for the ROOT team

https://root.cern

TMVA in the current ML landscape

● TMVA provides implementations of a vast amount of ML
methods collected over the last decade

● Todays developments from the industry shifts the scope
of TMVA towards specialization on HEP specific
requirements

2

Google Trends: machine learning

Interoperability with the ML ecosystem

● Crucial feature for ML
Moving data from ROOT files to Python and
vice versa

● Writing numpy arrays supported through
MakeNumpyDataFrame feature

● Further information about the interoperability
of ROOT with the scientific Python ecosystem
in this talk:
Put links to the talks/posters

3

Heavy-lifting in C++ and remote access of data
df = ROOT.RDataFrame("Events", "http://file.root")
 .Filter("x1 > 0")
 .Define("x3", "x1 * x2")

Read-out as numpy arrays
vars = ("x1", "x2", "x3")
cols = df.AsNumpy(vars)

Create typical ML input data structure
x = numpy.stack([cols[v] for v in vars])

Push data to scipy ecosystem
pdf = pandas.DataFrame(cols)

ROOT 6.16

Modern interfaces

● Modern high-level interfaces
● Functional
● Thread-safe
● Support C++ STL container
● Full C++ and Python support
● Example tutorial here

● Introduce RTensor as replacement for
missing container of multi-dimensional
arrays in C++
● See tutorials here and here
● Keep track of ML sub-group in

Standard C++ Foundation

● RTensor allows for seamless integration
with numpy arrays in Python
● Interoperable with ML ecosystem

4

// Construct model
TMVA::RBDT bdt("myBDT", "path to weight file");

// Single-event inference
auto y = bdt.Compute({1.0, 2.0, ...});

// Batch inference
TMVA::RTensor<float> x(data, shape);
auto y2 = bdt.Compute(x);

C++ SG19, Machine Learning: Improve on C++’s ability to support [...] array, matrix, linear algebra, [...]

ROOT 6.20
(experimental)

https://root.cern/doc/master/tmva003__RReader_8C.html
https://root.cern.ch/doc/master/tmva001__RTensor_8C.html
https://root.cern.ch/doc/master/tmva002__RDataFrameAsTensor_8C.html
https://isocpp.org/std/the-committee

Integration with modern ROOT facilities

● Integration with ROOT’s implicit
multi-threading paradigm
● ROOT::EnableImplicitMT()
● Correct sharing of resources
● Already supported by TMVA::DNN

and method BDT

● Tight integration with ROOT::RDataFrame

● Each method is standalone but follows a
common interface
● sklearn-like paradigm
● Simple integration in modern C++

5

// Run workflow on multiple threads
ROOT::EnableImplicitMT();

// Construct model
TMVA::RBDT bdt("myBDT", "path to weight file");

// Process data in parallel using RDataFrame
ROOT::RDataFrame df("Events", "file.root");
auto df2 = df.Define("bdt_output",
 TMVA::Compute<2, float>(bdt),
 {"var1", "var2"});

Fast decision tree inference

xgb = xgboost.BDTClassifier(options)
xgb.fit(x, y)

ROOT.TMVA.SaveXGBoost(xgb, "myBDT", "file.root")

6

● Inference engine taking model parameters
from externally trained models

● Features
● Simple to use from Python and C++
● Thread-safe
● Zero-copy
● Fast for single event and batch

inference

● Coming soon
● Multi-threading support for batch

inference
● Additional converters for external

frameworks

bdt = ROOT.TMVA.RBDT("myBDT", "http://file.root")
x = numpy.array(...)
y = bdt.Compute(x)

External training and model conversion

Python application

C++ application
TMVA::RBDT bdt("myBDT", "http://file.root");
auto y1 = bdt.Compute({1.0, ...});

auto x = TMVA::RTensor<float>(data, shape);
auto y2 = bdt.Compute(x);ROOT 6.20

(experimental)

Fast BDT inference: Performance

7

● Performance measurement of a model with
● 500 trees
● 3 maximum depth
● 10 input variables

● Leverages successfully just-in-time compilation
● Using cling with optimization level 3
● Optimize inference code at construction time

based on model parameters

● Improved runtime performance in Python
workflow compared to XGBoost
● Batch evaluation on a single thread
● 4x faster than XGBoost for 106 events
● Jitting provides additional 40% speed-up

improving to 6x faster inference

● See our poster for the technical details
Put details here how to find the poster

Report of the R&D project by Luca Zampieri

http://cds.cern.ch/record/2688585/

Fast neural networks

● Main focus of the industry tools
● Large models
● Batch inference
● Fast training workflow
● Accessible through Python ecosystem

● Focus of TMVA in upcoming developments
● Minimal latency / fast single event inference
● Seamless integration in Python and C++
● Sustainability and reproducibility
● See our poster for more details

● New developments for neural networks
● Integration of cuDNN
● Support for LSTM and GRU layers

8

Tr
ai

ni
ng

A
pp

lic
at

io
n

ROOT 6.20

To be replaced

To be replaced

Outlook
● Paradigm of future TMVA developments

● Modularize
● Interoperate with the ML ecosystem
● Specialize on HEP peculiarities

● Example Modernize TMVA GUI
● Move from monolithic design to modular

toolbox of visualization tools
● Example HEP peculiarity:

Statistical comparison of distributions

● Example Generic data-loader for ML workflows
● Generator doing batching and shuffling

from ROOT files on the fly
● Allows for training on huge datasets

9

df = ROOT.RDataFrame("Events", "http://file.root")
generator = TMVA::BatchGenerator(df, cols, batchSize)
for step in gradientSteps:
 x = generator()
 model.fit(x)

Example ML workflow loading batches

Typical TMVA GUI visualization

Future
developments

Summary
● New features

● Modern interfaces for inference
● Integration with modern ROOT facilities
● Fast inference for decision trees
● Handling of multi-dimensional arrays in C++

and interoperability with Python
● Facilitate integration with the ML ecosystem

● Paradigm of future TMVA developments
● Modularize
● Interoperate with the ML ecosystem
● Specialize on HEP peculiarities

● Tutorials showing a full ML workflow using the new tools
● Data loading and preprocessing
● External training and model conversion
● Testing and application in Python
● Application in C++

10

http://foo
http://foo
http://foo
http://foo

