

Work in Progress

Fast Inference for Machine Learning in ROOT/TMVA Kim Albertsson, <u>Sitong An ^[4], Lorenzo Moneta, Stefan Wunsch, Luca Zampieri</u> **EP-SFT CERN**

https://root.cern

Our overview talk Machine Learning with ROOT/TMVA Monday 4 Nov 11:15 at Hall G (Track 6) by Stefan Wunsch

TMVA in modern ML ecosystem

- TMVA: Toolkit for Multivariate Analysis
 - Root-integrated Machine Learning environment

Tree ordering

- Order trees by feature & cut value of first (root) node
- Improve dynamic branch prediction, reduces branch misses

- Supports the training and evaluation of a variety of Machine Learning algorithms since 2005
- ML Landscape is fast evolving
 - Development of Deep Learning
 - Maturation of powerful DL frameworks outside of HEP
- TMVA evolves to better serve ML-HEP community
- Focus on a fast and robust ML inference system for easy deployment of trained ML/DL models to HEP data in production
- **1. Fast Inference Engine for Decision Trees**

ROOT 6.20 Experimental

- Initiated as CERN Summer Student Project by Luca Zampieri^[1]
- Decision-tree ML algorithms widely popular in HEP and in data science
- Special need for application in HEP
 - Low-latency inference critical for some use cases i.e. HLT
 - Focus on event-loop inference rather than batch inference

Branchless (JIT) 1.0 -Branchless (IIT) (NoOrdering 10 12 14 10⁵ events [-]

Loop nest optimization

Chunk iteration space (over trees & events) into small blocks Improve data/instruction locality, reduces cache misses

2. Inference of ONNX Deep Learning Models

> Just-in-time compilation

- ✤ With Cling^[2], the interactive compiler in ROOT
- Compiles hard-coded evaluation logic parsed from the model
- This allows us to exploit compiler optimization dynamically

> "Branchless" representation of trees

- Unroll the tree into a long array with topological ordering
- Fill in missing values in sparse trees to create full binary trees in the array representation

Tree traversal is now a maths operation - cheaper than if branch

- **ONNX**^[3] is an open format for DL models
 - Supports most popular DL operators/layers
 - Convertors available from major DL framework to ONNX
- **ONNX runtime**: an open source inference engine
 - Supports by industry in fast development
 - Highly optimized for low-latency inference
 - Multiple backends and optimization methods supported

Development in TMVA: an inference interface for ONNX models, designed for HEP applications

ONNX operator-based infrastructure

- ONNX model exploration and manipulation
- Allow potential customized optimization

□ Interface with open-source ONNX runtime

- Convenient interoperability with ROOT data
- Support for implicit multi-threading inference

Code generation from ONNX model

- Branchless implementation assumes shallow, nearly-full trees Most decision-tree ML algorithms produce these
- Branched implementation to be integrated

DL Frameworks	ONNX Models	C++ Script
DL Frameworks	ONNX Models	C++ Script

- Generate inference script from model for target backend
- No external dependency on ONNX runtime
- Allow easy integration of DL Algorithms into existing C++ analysis frameworks

Working on ML/DL for High Energy Physics? Help us to help you - come and talk to us about what you would like to see in ROOT/TMVA!

Acknowledgement and References

- 1. L. Zampieri, 2019, Fast inference engine for Decision Trees, CERN-STUDENTS-Note-2019-183
- 2. V Vasilev, Ph Canal, A Naumann, and P Russo, 2012, Cling–The New Interactive Interpreter for ROOT 6. In Journal of Physics: Conference Series, Vol. 396.
- 3. ONNX., 2019, Open Neural Network Exchange, https://onnx.ai/
- 4. S.An. gratefully acknowledges the support of the Marie Sklodowska-Curie Innovative Training Network Fellowship of the European Commission Horizon 2020 Programme, under contract number 765710 INSIGHTS. https://insights-itn.eu/

<u>s.an@cern.ch/luca.zampieri@epfl.ch</u>