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ZSTD - a dictionary-type algorithm (LZ77) with large search window and fast implementations of entropy coding stage, using either very fast Finite State
Entropy (tANS) or Huffman coding. [Facebook]

AVAILABLE IN ROOT 6.20!
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— Size of file compressed with ZSTD is 20 % bigger, but it is 6x faster — A bit better compression ratio then ZLIB;

comparing to LZMA-5!
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— For the "flat tree" with a simple structure the best choice could be LZ4:

10x time faster read speed
NanoAOD 2017 compressed with ZSTD (compression level 5)
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tree->SetBit( T Tree::kOnlyFlushAtCluster);

— NanoAQOD - using ZSTD could be a better compromise between size
of file on a disk and decompression speed(faster analysis!);

— MiniAOD - size of file with ZSTD is 10% bigger than using LZMA,
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