ROOT 1/0 improvements for HEP analysis

Oksana Shadura (UNL), Zhe Zhang (UNL), Brian Paul Bockelman (Morgridge Institute for .
Research), Philippe Canal (FNAL), Danilo Piparo (CERN)

oksana.shadura@cern.ch,bbockelman@©@morgridge.org

ZSTD - a dictionary-type algorithm (LZ77) with large search window and fast implementations of entropy coding stage, using either very fast Finite State
Entropy (tANS) or Huffman coding. [Facebook]

AVAILABLE IN ROOT 6.20!

Decompression speed vs Compression Ratio for ROOT W ZSTD-1 W ZSTD-2 ZSTD-3 8 zSTD-4 |4 zSTD-5 [ZSTD-6 [ZSTD-7
compression algorithms o ZSTD-8 ZSTD-9 | ZSTD-10 @ ZSTD-11 ZSTD-12 ZSTD-13
nanoaod_ttjet_13tev_june2019.root (1620657 entries) ZLIB-1 cLIB-6 ZLIB-9 LZM":}-Q LZ4-1 Lz4-4 Lz4-9
45 4.5 =
4
e 4
. 3.9 —
o
= fe) 3
S 3 o \ *A @A Y, L
S s 25
E 3 = . 2
O o UE:_ 2
5 15
2.5 O
0 100 200 300 400 500 600 1
Decompression speed, MB/s
0.5
® Z5TD-1 LZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6
ZSTD-7 ZSTD-8 ZSTD-9 v ZSTD-10 o ZSTD-11 ZSTD-1 0
ZSTD-13 ZSTD-14 Vv ZSTD-15 o ZSTD-16 ¢ ZSTD-17 m ZSTD-1
A ZSTD-19 Vv ZSTD-20 e ZSTD-21 ¢ ZLIB-1 B ZLIB-6 A ZLIB-9 . .
LZMA-1 LZMA-5 LZMA-9 ROOT compression algorithms
HTgNCharts.com
— Size of file compressed with ZSTD is 20 % bigger, but it is 6x faster — A bit better compression ratio then ZLIB;

comparing to LZMA-5!

220.09

225 B LZ4-1
Decompression speed vs Compression Ratio for ROOT 200 B LZ44
compression algorithms e LZ4-9
lhcb_B2HHH_MagnetDown.root (5135823 entries) %:I B LZMA-8
1.6 g 1@ B ZLIB-1
E 125 . ZLIB-6
9 1.5 , ® W ZLuIB-9
= o T 100
c 7 B ZSTD-1
o O _
s A 5 75 | ZSTD-3
= :
o o O 50 | ZSTD-5
& o
S 13 55 ZSTD-9
v ZSTD-15
0
1.2
-500 0 500 1000 1500 2000 2500 | | |
Decompression speed, MB/s Compression tests (transformation done by hadd) using file, reported on ROOT forum
® ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6 _ _ _
ZSTD-7 ZSTD-8 ZSTD-9 ZSTD-10 © ZSTD-15 ZSTD-19 — /ZSTD has no problems with compression of data that contains the byte
ZSTD-20 A ZLIB-1 V ZLIB-6 ® ZLIB-9 LZMA-1 LZMA-4 .
LZMA-9 V¥V LZ4-1 ® LZ4-4 & LZ4-9 offset of each event in the branch data (VS |_Z4),

HTghcharts.com

— For the "flat tree" with a simple structure the best choice could be LZ4:

10x time faster read speed
NanoAOD 2017 compressed with ZSTD (compression level 5)

B with kOnlyFlushAtCluster [l without kOnlyFlushAtCluster

Decompression speed vs Compression Ratio for ROOT

compression algorithms k

nanoaod_ttjet_13tev_june2019.root (1620657 entries) Decsﬂprggafﬁgjg

Compression ratio
L

3 m_ 4
2 _ <
! Ao 6 Ao 10 120 1500 150 2000 — T Trees can be forced to only create new baskets at event cluster boundaries,
pecompression speed, WE/S it simplifies file layout and |/O at the cost of memory (NanoAOD 2017 size
D 7e1D-7 - 79TD-8 . 75TD_s> . 7STD-10 . 7STD-11 . 757Dt difference was 3.6 %). Recommended for simple file formats such as ntuples
ZSTD-13 ZSTD-14 ZSTD-15 ZSTD-16 ZSTD-17 ZSTD-1
ZSTD-19 ZSTD-20 ZSTD-21 + ZLIB-1 = ZLIB-6 4 ZLIB-9 but not more com plex data types.
LZMA-1 LZMA-5 LZMA-9 m LZ4-1 ~ LZ4-4 v LZ4-9

AIgNCndrts. com

tree->SetBit(T Tree::kOnlyFlushAtCluster);

— NanoAQOD - using ZSTD could be a better compromise between size
of file on a disk and decompression speed(faster analysis!);

— MiniAOD - size of file with ZSTD is 10% bigger than using LZMA,

bUt the t|me Spend in deCOm preSSing on read baCk iS].5X |ESS| This work was supported by the National Science Foundation under Grant ACI-1450323.
(big thanks to David Lange for MiniAOD measurements)

