
ROOT I/O improvements for HEP analysis
Oksana Shadura (UNL), Zhe Zhang (UNL), Brian Paul Bockelman (Morgridge Institute for
Research), Philippe Canal (FNAL), Danilo Piparo (CERN)

oksana.shadura@cern.ch,bbockelman@morgridge.org

Introduction
ZSTD - a dictionary-type algorithm (LZ77) with large search window and fast implementations of entropy coding stage, using either very fast Finite State
Entropy (tANS) or Huffman coding. [Facebook]

AVAILABLE IN ROOT 6.20!

ZSTD for NanoAOD (compression levels)

→ Size of file compressed with ZSTD is 20 % bigger, but it is 6x faster
comparing to LZMA-5!

NanoAOD 2019 compression ratio comparison

→ A bit better compression ratio then ZLIB;

Data file with offset arrays

→ ZSTD has no problems with compression of data that contains the byte
offset of each event in the branch data (vs LZ4);

LHCB compression speed vs compression ratio

→ For the "flat tree" with a simple structure the best choice could be LZ4:
10x time faster read speed

CMSSW NanoAOD and MiniAOD (including LZ4)

→ NanoAOD - using ZSTD could be a better compromise between size
of file on a disk and decompression speed(faster analysis!);

→ MiniAOD - size of file with ZSTD is 10% bigger than using LZMA,
but the time spend in decompressing on readback is 15x less!

(big thanks to David Lange for MiniAOD measurements)

TTree::kOnlyFlushAtCluster: faster decompression

→ TTrees can be forced to only create new baskets at event cluster boundaries,
it simplifies file layout and I/O at the cost of memory (NanoAOD 2017 size
difference was 3.6 %). Recommended for simple file formats such as ntuples
but not more complex data types.

tree->SetBit(TTree::kOnlyFlushAtCluster);

Acknowledgements
This work was supported by the National Science Foundation under Grant ACI-1450323.


