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The TTree I/O

TTree’s column-wise format addresses our very problem

• TTree I/O speed and storage efficiency is significantly better
than industry products ACAT’17

• Only few other formats can serialize the complexity of even
the simplest event models:

• Apache Parquet: optimized for sparse collections but
HEP data is not sparse

• Apache Arrow: only in-memory format but not on-disk
format

• ROOT’s unique feature: seamless C++ integration,
users do not need to write or generate schema mapping

Nested collections typical in HEP
struct Event {

std::vector<Particle> fPtcls;
};

struct Particle {
std::vector<Track> fTracks;

};

struct Track {
int fVertexId;

};

We want to ensure that ROOT I/O continues to yield the most efficient analysis I/O
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RNTuple: The New Experimental ROOT I/O Subsystem

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . . )

grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

• Improve different parts
independently

• Add new storage backends
• Physical: ROOT file container,

raw file, object store, NVRAM
• Virtual: “friend” and “chain”

• Serialization of simple types and
STL collections built-in – can be
read without libCore
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Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

• Improve different parts
independently

• Add new storage backends
• Physical: ROOT file container,

raw file, object store, NVRAM
• Virtual: “friend” and “chain”

• Serialization of simple types and
STL collections built-in – can be
read without libCore

Approximate translation:

TTree ≈ RNTupleReader
RNTupleWriter

TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool
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RNTuple format evolution

Key improvements in RNTuple
• More efficient storage of collections and sub

collections

• On disk layout matches most modern
in-memory layouts (little-endian)

• Better control of I/O memory utilization

• Boolean values stored as bit field instead of
byte array

Goal: slash memory copies and (virtual)
function calls in I/O code paths

RNTuple’s type system
• bool

• Integers (signed and unsigned, 8bit to 64bit)

• float, double

• std::string

• std::array

• std::vector, VecOps::RVec

• std::variant

• Whatever other std type we want,
e. g. std::chrono

• Classes with dictionaries

Fully composable within the type system
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RNTuple Interface Sketch: Reading Data

Populate User Objects
auto model = RNTupleModel::Create();
auto fldPt = model->MakeField<float>("pt");
// Note: there is also a type-unsafe API

auto ntpl = RNTupleReader::Open(
std::move(model), "Events", "f.root");

for (auto entryId : *ntpl) {
ntuple->LoadEntry(entryId);
h.Fill(*fldPt);

}

Zero-Copy
auto ntpl =

RNTupleReader::Open("Events", "f.root");
auto viewPt = ntpl->GetView<float>("pt");

for (auto i : ntpl->GetViewRange()) {
h.Fill(viewPt(i));

}

RDataFrame
auto df = ROOT::Experimental::MakeNTupleDataFrame("Events", "http://xrootd/f.root");
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Sample Analyses for Performance Benchmarking

LHCb run 1 open data B2HHH
• Dense reading (> 75 %):

18/26 branches
• Fully flat data model

• 8.5 million events
• 24 k selected events

B_mass_copy
Entries  23895

Mean     5262

Std Dev     75.02
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H1 micro dst [×10]
• Medium dense reading

(∼ 10 %): 16/152 branches
• Event substructure: vector

of jets etc.
• 2.8 million events
• 75 k selected events
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CMS nanoAOD June 2019
• Sparse reading (< 1 %):

6/1479 branches
• Event substructure: vector

of jets etc.
• 1.6 million events
• 141 k selected events

Dimuon_mass_copy
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Std Dev     26.98

1 10 210
 (GeV)µµm

1

10

210

310E
ve

nt
s

N

Dimuon_mass_copy

Entries  141589

Mean    31.18

Std Dev     26.98

η
ω,ρ

φ
ψJ/

'ψ
Y(1,2,3S) Z

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls

jblomer@cern.ch RNTuple – CHEP 2019 5 / 13



Storage efficiency for very simple data models
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As expected, RNTuple

and TTree are very close

for flat data models.
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As expected, RNTuple

and TTree are very close

for flat data models.

Promising new compres-

sion algorithm zstd; des-

ignated default for RNTu-

ple. Oksana’s Poster
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Storage efficiency for events with substructure
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Half of the RNTuple improvement

through more efficient storage of collec-

tions (addressed by TTree’s experimental

kGenerateOffsetMap I/O flag). Other

half through more efficient storage of

trigger fields (bool).
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Half of the RNTuple improvement

through more efficient storage of collec-

tions (addressed by TTree’s experimental

kGenerateOffsetMap I/O flag). Other

half through more efficient storage of

trigger fields (bool).

RNTuple space im-

provements survive

compression.

→ see backup slides for "H1" plot
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Read speed for warm file system buffers (kernel memory)
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Significant perfor-

mance gain from the

faster deserialization

by RNTuple.
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Read speed for NVMe SSD
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scheduling.
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Performance depends

on deserialization, de-

compression, and I/O

scheduling.
Sweet spot for zstd.

→ Same trend for "LHCb" and "H1" samples
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Read speed with different bandwidth and latency profiles
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Performance is dominated by I/O

scheduling (TTreeCache, RClusterPool),

which needs to minimize the number of

requests and the transfer volume.
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Full exploitation of SSDs by concurrent streams
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680 MB/s

RNTuple SSD READ throughput using concurrent streams

Factor 2-3 improvements

by using multiple streams,

reaching full SSD through-

put ("H1").

Expect further improve-

ments for "LHCb" and

"CMS" by multi-cluster

read-ahead.
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First measurements with Optane NVDIMMs (“App Direct” mode)
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LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

jblomer@cern.ch RNTuple – CHEP 2019 12 / 13



First measurements with Optane NVDIMMs (“App Direct” mode)

0

5

10

15

20

25

30

35

40

45

610×
E

ve
nt

s 
/ s

Mem. cached     Optane              SSD (16 strms)

read() read() read()

mmap() mmap() mmap()

95% CL

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

Benchmark not limited by

Optane throughput: excel-

lent device for probing I/O

code path performance.
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Benchmark not limited by

Optane throughput: excel-

lent device for probing I/O

code path performance.

RNTuple gives access to

mmap() tests: ROOT can

do better I/O scheduling for

block devices with custom

read() calls.
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Summary & Outlook

• RNTuple is exploring the I/O performance frontiers

• Optimized throughput starting from a blank piece of paper plus 25 years of
experience

• Simple, robust, intuitive ROOT7 user interface

• Significant speed-ups for simple event models

• Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready I/O subsystem!
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• Significant speed-ups for simple event models

• Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready I/O subsystem!

Many thanks to CERN openlab and CERN IT for providing test hardware!
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Backup Slides



Breakdown of the RNTuple Data Format

. . . . . .

Page

Cluster

Dataset / File

C++ collections become offset columns
struct Event {

int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Cluster

• Block of consecutive complete events

• Unit of thread parallelization (read and write)

• Unit of reading when seeks are expensive

• Typically tens of megabytes

Page

• Unit of memory mapping

• Unit of (de-)compression and (un)packing

• Unit of reading when when seeks are cheap

• Typically tens of kilobytes
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