
Evolution of the ROOT Tree I/O

Jakob Blomer1, Philippe Canal2, Axel Naumann1, Danilo Piparo1

1CERN 2Fermilab
CHEP 2019

The TTree I/O

TTree’s column-wise format addresses our very problem

• TTree I/O speed and storage efficiency is significantly better
than industry products ACAT’17

• Only few other formats can serialize the complexity of even
the simplest event models:

• Apache Parquet: optimized for sparse collections but
HEP data is not sparse

• Apache Arrow: only in-memory format but not on-disk
format

• ROOT’s unique feature: seamless C++ integration,
users do not need to write or generate schema mapping

Nested collections typical in HEP
struct Event {

std::vector<Particle> fPtcls;
};

struct Particle {
std::vector<Track> fTracks;

};

struct Track {
int fVertexId;

};

We want to ensure that ROOT I/O continues to yield the most efficient analysis I/O

jblomer@cern.ch RNTuple – CHEP 2019 1 / 13

https://indico.cern.ch/event/567550/contributions/2628878/

The TTree I/O

TTree’s column-wise format addresses our very problem

• TTree I/O speed and storage efficiency is significantly better
than industry products ACAT’17

• Only few other formats can serialize the complexity of even
the simplest event models:

• Apache Parquet: optimized for sparse collections but
HEP data is not sparse

• Apache Arrow: only in-memory format but not on-disk
format

• ROOT’s unique feature: seamless C++ integration,
users do not need to write or generate schema mapping

Nested collections typical in HEP
struct Event {

std::vector<Particle> fPtcls;
};

struct Particle {
std::vector<Track> fTracks;

};

struct Track {
int fVertexId;

};

We want to ensure that ROOT I/O continues to yield the most efficient analysis I/O

jblomer@cern.ch RNTuple – CHEP 2019 1 / 13

https://indico.cern.ch/event/567550/contributions/2628878/

RNTuple: The New Experimental ROOT I/O Subsystem

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

• Improve different parts
independently

• Add new storage backends
• Physical: ROOT file container,

raw file, object store, NVRAM
• Virtual: “friend” and “chain”

• Serialization of simple types and
STL collections built-in – can be
read without libCore

jblomer@cern.ch RNTuple – CHEP 2019 2 / 13

RNTuple: The New Experimental ROOT I/O Subsystem

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

• Improve different parts
independently

• Add new storage backends
• Physical: ROOT file container,

raw file, object store, NVRAM
• Virtual: “friend” and “chain”

• Serialization of simple types and
STL collections built-in – can be
read without libCore

Approximate translation:

TTree ≈ RNTupleReader
RNTupleWriter

TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool

jblomer@cern.ch RNTuple – CHEP 2019 2 / 13

RNTuple format evolution

Key improvements in RNTuple
• More efficient storage of collections and sub

collections

• On disk layout matches most modern
in-memory layouts (little-endian)

• Better control of I/O memory utilization

• Boolean values stored as bit field instead of
byte array

Goal: slash memory copies and (virtual)
function calls in I/O code paths

RNTuple’s type system
• bool

• Integers (signed and unsigned, 8bit to 64bit)

• float, double

• std::string

• std::array

• std::vector, VecOps::RVec

• std::variant

• Whatever other std type we want,
e. g. std::chrono

• Classes with dictionaries

Fully composable within the type system

jblomer@cern.ch RNTuple – CHEP 2019 3 / 13

RNTuple Interface Sketch: Reading Data

Populate User Objects
auto model = RNTupleModel::Create();
auto fldPt = model->MakeField<float>("pt");
// Note: there is also a type-unsafe API

auto ntpl = RNTupleReader::Open(
std::move(model), "Events", "f.root");

for (auto entryId : *ntpl) {
ntuple->LoadEntry(entryId);
h.Fill(*fldPt);

}

Zero-Copy
auto ntpl =

RNTupleReader::Open("Events", "f.root");
auto viewPt = ntpl->GetView<float>("pt");

for (auto i : ntpl->GetViewRange()) {
h.Fill(viewPt(i));

}

RDataFrame
auto df = ROOT::Experimental::MakeNTupleDataFrame("Events", "http://xrootd/f.root");

jblomer@cern.ch RNTuple – CHEP 2019 4 / 13

Sample Analyses for Performance Benchmarking

LHCb run 1 open data B2HHH
• Dense reading (> 75 %):

18/26 branches
• Fully flat data model

• 8.5 million events
• 24 k selected events

B_mass_copy
Entries 23895

Mean 5262

Std Dev 75.02

5050 5100 5150 5200 5250 5300 5350 5400 5450 5500
]2 [MeV/cKKKm

0

50

100

150

200

250

300

350

B_mass_copy
Entries 23895

Mean 5262

Std Dev 75.02

H1 micro dst [×10]
• Medium dense reading

(∼ 10 %): 16/152 branches
• Event substructure: vector

of jets etc.
• 2.8 million events
• 75 k selected events

Entries 75250

Mean 0.1551

Std Dev 0.008494

0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17

]2[GeV/cπK - mππKm

0

1000

2000

3000

4000

5000

Entries 75250

Mean 0.1551

Std Dev 0.008494

dm_d

CMS nanoAOD June 2019
• Sparse reading (< 1 %):

6/1479 branches
• Event substructure: vector

of jets etc.
• 1.6 million events
• 141 k selected events

Dimuon_mass_copy

Entries 141589

Mean 31.18

Std Dev 26.98

1 10 210
 (GeV)µµm

1

10

210

310E
ve

nt
s

N

Dimuon_mass_copy

Entries 141589

Mean 31.18

Std Dev 26.98

η
ω,ρ

φ
ψJ/

'ψ
Y(1,2,3S) Z

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls

jblomer@cern.ch RNTuple – CHEP 2019 5 / 13

Storage efficiency for very simple data models

0
20
40
60
80

100
120
140
160
180

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency LHCb Run 1 Open Data B2HHH

TTree

RNTuple

Storage Efficiency LHCb Run 1 Open Data B2HHH

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

jblomer@cern.ch RNTuple – CHEP 2019 6 / 13

Storage efficiency for very simple data models

0
20
40
60
80

100
120
140
160
180

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency LHCb Run 1 Open Data B2HHH

TTree

RNTuple

Storage Efficiency LHCb Run 1 Open Data B2HHH

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

As expected, RNTuple

and TTree are very close

for flat data models.

jblomer@cern.ch RNTuple – CHEP 2019 6 / 13

Storage efficiency for very simple data models

0
20
40
60
80

100
120
140
160
180

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency LHCb Run 1 Open Data B2HHH

TTree

RNTuple

Storage Efficiency LHCb Run 1 Open Data B2HHH

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

As expected, RNTuple

and TTree are very close

for flat data models.

Promising new compres-

sion algorithm zstd; des-

ignated default for RNTu-

ple. Oksana’s Poster

jblomer@cern.ch RNTuple – CHEP 2019 6 / 13

https://indico.cern.ch/event/773049/contributions/3474778/

Storage efficiency for events with substructure

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

jblomer@cern.ch RNTuple – CHEP 2019 7 / 13

Storage efficiency for events with substructure

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

Half of the RNTuple improvement

through more efficient storage of collec-

tions (addressed by TTree’s experimental

kGenerateOffsetMap I/O flag). Other

half through more efficient storage of

trigger fields (bool).

jblomer@cern.ch RNTuple – CHEP 2019 7 / 13

Storage efficiency for events with substructure

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

Half of the RNTuple improvement

through more efficient storage of collec-

tions (addressed by TTree’s experimental

kGenerateOffsetMap I/O flag). Other

half through more efficient storage of

trigger fields (bool).

RNTuple space im-

provements survive

compression.

jblomer@cern.ch RNTuple – CHEP 2019 7 / 13

Storage efficiency for events with substructure

0

1000

2000

3000

4000

5000

6000

7000

8000

A
ve

ra
ge

 e
ve

nt
 s

iz
e

[B
]

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

Half of the RNTuple improvement

through more efficient storage of collec-

tions (addressed by TTree’s experimental

kGenerateOffsetMap I/O flag). Other

half through more efficient storage of

trigger fields (bool).

RNTuple space im-

provements survive

compression.

→ see backup slides for "H1" plot

jblomer@cern.ch RNTuple – CHEP 2019 7 / 13

Read speed for warm file system buffers (kernel memory)

0

5

10

15

20

25

30

35

40

45
610×

E
ve

nt
s

/ s
MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

jblomer@cern.ch RNTuple – CHEP 2019 8 / 13

Read speed for warm file system buffers (kernel memory)

0

5

10

15

20

25

30

35

40

45
610×

E
ve

nt
s

/ s
MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

Significant perfor-

mance gain from the

faster deserialization

by RNTuple.

jblomer@cern.ch RNTuple – CHEP 2019 8 / 13

Read speed for NVMe SSD

0

2

4

6

8

10

12

14
610×

E
ve

nt
s

/ s
SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

jblomer@cern.ch RNTuple – CHEP 2019 9 / 13

Read speed for NVMe SSD

0

2

4

6

8

10

12

14
610×

E
ve

nt
s

/ s
SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

Performance depends

on deserialization, de-

compression, and I/O

scheduling.

jblomer@cern.ch RNTuple – CHEP 2019 9 / 13

Read speed for NVMe SSD

0

2

4

6

8

10

12

14
610×

E
ve

nt
s

/ s
SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

Performance depends

on deserialization, de-

compression, and I/O

scheduling.
Sweet spot for zstd.

jblomer@cern.ch RNTuple – CHEP 2019 9 / 13

Read speed for NVMe SSD

0

2

4

6

8

10

12

14
610×

E
ve

nt
s

/ s
SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

TTree

RNTuple

95% CL

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

uncompressed lz4 zstd zlib lzma0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

Performance depends

on deserialization, de-

compression, and I/O

scheduling.
Sweet spot for zstd.

→ Same trend for "LHCb" and "H1" samples

jblomer@cern.ch RNTuple – CHEP 2019 9 / 13

Read speed with different bandwidth and latency profiles

610

710

E
ve

nt
s

/ s
READ throughput using different physical data sources (zstd compressed)

"LHCb" "H1" "CMS"

TTree TTree TTree

RNTuple RNTuple RNTuple

95% CL

READ throughput using different physical data sources (zstd compressed)

0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

"LHCb" "H1" "CMS"

Solid State Disk Spinning Disk XRootD HTTP, 1GbE, 10ms

jblomer@cern.ch RNTuple – CHEP 2019 10 / 13

Read speed with different bandwidth and latency profiles

610

710

E
ve

nt
s

/ s
READ throughput using different physical data sources (zstd compressed)

"LHCb" "H1" "CMS"

TTree TTree TTree

RNTuple RNTuple RNTuple

95% CL

READ throughput using different physical data sources (zstd compressed)

0
0.5

1
1.5

2
2.5

3

R
N

T
up

le
 /

T
T

re
e

"LHCb" "H1" "CMS"

Solid State Disk Spinning Disk XRootD HTTP, 1GbE, 10ms

Performance is dominated by I/O

scheduling (TTreeCache, RClusterPool),

which needs to minimize the number of

requests and the transfer volume.

jblomer@cern.ch RNTuple – CHEP 2019 10 / 13

Full exploitation of SSDs by concurrent streams

Streams

0

1

2

3

4

5

6

7
S

pe
ed

-u
p

w
rt

. s
in

gl
e

st
re

am

"LHCb" "H1" "CMS"

uncompressed uncompressed uncompressed

zstd zstd zstd

95% CL

1 2 4 8 16 32 64 warm cache

700 MB/s

1.2 GB/s

680 MB/s

RNTuple SSD READ throughput using concurrent streams

jblomer@cern.ch RNTuple – CHEP 2019 11 / 13

Full exploitation of SSDs by concurrent streams

Streams

0

1

2

3

4

5

6

7
S

pe
ed

-u
p

w
rt

. s
in

gl
e

st
re

am

"LHCb" "H1" "CMS"

uncompressed uncompressed uncompressed

zstd zstd zstd

95% CL

1 2 4 8 16 32 64 warm cache

700 MB/s

1.2 GB/s

680 MB/s

RNTuple SSD READ throughput using concurrent streams

Factor 2-3 improvements

by using multiple streams,

reaching full SSD through-

put ("H1").

jblomer@cern.ch RNTuple – CHEP 2019 11 / 13

Full exploitation of SSDs by concurrent streams

Streams

0

1

2

3

4

5

6

7
S

pe
ed

-u
p

w
rt

. s
in

gl
e

st
re

am

"LHCb" "H1" "CMS"

uncompressed uncompressed uncompressed

zstd zstd zstd

95% CL

1 2 4 8 16 32 64 warm cache

700 MB/s

1.2 GB/s

680 MB/s

RNTuple SSD READ throughput using concurrent streams

Factor 2-3 improvements

by using multiple streams,

reaching full SSD through-

put ("H1").

Expect further improve-

ments for "LHCb" and

"CMS" by multi-cluster

read-ahead.

jblomer@cern.ch RNTuple – CHEP 2019 11 / 13

First measurements with Optane NVDIMMs (“App Direct” mode)

0

5

10

15

20

25

30

35

40

45

610×
E

ve
nt

s
/ s

Mem. cached Optane SSD (16 strms)

read() read() read()

mmap() mmap() mmap()

95% CL

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

jblomer@cern.ch RNTuple – CHEP 2019 12 / 13

First measurements with Optane NVDIMMs (“App Direct” mode)

0

5

10

15

20

25

30

35

40

45

610×
E

ve
nt

s
/ s

Mem. cached Optane SSD (16 strms)

read() read() read()

mmap() mmap() mmap()

95% CL

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

Benchmark not limited by

Optane throughput: excel-

lent device for probing I/O

code path performance.

jblomer@cern.ch RNTuple – CHEP 2019 12 / 13

First measurements with Optane NVDIMMs (“App Direct” mode)

0

5

10

15

20

25

30

35

40

45

610×
E

ve
nt

s
/ s

Mem. cached Optane SSD (16 strms)

read() read() read()

mmap() mmap() mmap()

95% CL

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

Benchmark not limited by

Optane throughput: excel-

lent device for probing I/O

code path performance.

RNTuple gives access to

mmap() tests: ROOT can

do better I/O scheduling for

block devices with custom

read() calls.

jblomer@cern.ch RNTuple – CHEP 2019 12 / 13

Summary & Outlook

• RNTuple is exploring the I/O performance frontiers

• Optimized throughput starting from a blank piece of paper plus 25 years of
experience

• Simple, robust, intuitive ROOT7 user interface

• Significant speed-ups for simple event models

• Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready I/O subsystem!

jblomer@cern.ch RNTuple – CHEP 2019 13 / 13

Summary & Outlook

• RNTuple is exploring the I/O performance frontiers

• Optimized throughput starting from a blank piece of paper plus 25 years of
experience

• Simple, robust, intuitive ROOT7 user interface

• Significant speed-ups for simple event models

• Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready I/O subsystem!

Many thanks to CERN openlab and CERN IT for providing test hardware!

jblomer@cern.ch RNTuple – CHEP 2019 13 / 13

Backup Slides

Breakdown of the RNTuple Data Format

.

Page

Cluster

Dataset / File

C++ collections become offset columns
struct Event {

int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Cluster

• Block of consecutive complete events

• Unit of thread parallelization (read and write)

• Unit of reading when seeks are expensive

• Typically tens of megabytes

Page

• Unit of memory mapping

• Unit of (de-)compression and (un)packing

• Unit of reading when when seeks are cheap

• Typically tens of kilobytes

	Appendix
	Backup Slides

