Evolution of the ROOT Tree 1/0

Jakob Blomer?, Philippe Canal®, Axel Naumann!, Danilo Piparo!
LCERN 2Fermilab

CHEP 2019

The TTree 1/0

[TTree's column-wise format addresses our very problem

= TTree /O speed and storage efficiency is significantly better

than industry products (JACATI

= Only few other formats can serialize the complexity of even
the simplest event models:
= Apache Parquet: optimized for sparse collections but
HEP data is not sparse

= Apache Arrow: only in-memory format but not on-disk
format

= ROOT's unique feature: seamless C++ integration,
users do not need to write or generate schema mapping

jblomer@cern.ch RNTuple — CHEP 2019

Nested collections typical in HEP

struct Event {
std: :vector<Particle> fPtcls;

8

struct Particle {
std: :vector<Track> fTracks;

g

struct Track {
int fVertexId;
I8

1/13

https://indico.cern.ch/event/567550/contributions/2628878/

The TTree 1/0

[TTree's column-wise format addresses our very problem

= TTree /O speed and storage efficiency is significantly better

than industry products (JACATI

= Only few other formats can serialize the complexity of even
the simplest event models:

= Apache Parquet: optimized for sparse collections but
HEP data is not sparse

= Apache Arrow: only in-memory format but not on-disk
format

= ROOT's unique feature: seamless C++ integration,
users do not need to write or generate schema mapping

Nested collections typical in HEP

struct Event {

8

std: :vector<Particle> fPtcls;

struct Particle {

g

std: :vector<Track> fTracks;

struct Track {

g

int fVertexId;

[We want to ensure that ROOT 1/O continues to yield the most efficient analysis I/O

jblomer@cern.ch RNTuple — CHEP 2019

1/13

https://indico.cern.ch/event/567550/contributions/2628878/

RNTuple: The New Experimental ROOT 1/0O Subsystem ﬁ

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, ...)
grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

jblomer@cern.ch RNTuple — CHEP 2019

Improve different parts
independently

Add new storage backends

= Physical: ROOT file container,
raw file, object store, NVRAM
= Virtual: “friend” and “chain”

Serialization of simple types and
STL collections built-in — can be
read without libCore

2/13

RNTuple: The New Experimental ROOT 1/0O Subsystem

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

TTree ~
TBranch ~
“Column TBasket =~
TTreeCache =~

Approximate translation:

RNTupleReader
RNTupleWriter

RField

RPage)
RClusterPool

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor

jblomer@cern.ch

RNTuple — CHEP 2019

S

Improve different parts
independently

Add new storage backends

= Physical: ROOT file container,
raw file, object store, NVRAM
= Virtual: “friend” and “chain”

Serialization of simple types and
STL collections built-in — can be
read without libCore

2/13

RNTuple format evolution

Key improvements in RN Tuple RNTuple’s type system
= More efficient storage of collections and sub = bool
collections

= Integers (signed and unsigned, 8bit to 64bit)
= On disk layout matches most modern « float double

in-memory layouts (little-endian)
= std::string
= Better control of /O memory utilization
= std::array

= Boolean values stored as bit field instead of

Sy sy = std::vector, VecOps: :RVec

. . = std::variant
Goal: slash memory copies and (virtual)

function calls in 1/0 code paths = Whatever other std type we want,
e.g. std: :chrono

= Classes with dictionaries

Fully composable within the type system

jblomer@cern.ch RNTuple — CHEP 2019 3/13

RNTuple Interface Sketch: Reading Data

Populate User Objects

Zero-Copy

auto model = RNTupleModel::Create();
auto f1dPt = model->MakeField<float>("pt");
// Note: there is also a type-unsafe API

auto ntpl = RNTupleReader: :0Open(
std: :move(model), "Events", "f.root");

for (auto entryId : *ntpl) {
ntuple->LoadEntry(entryId);
h.Fill(*f1dPt);

auto ntpl =
RNTupleReader: :Open("Events", "f.root");
auto viewPt = ntpl->GetView<float>("pt");

for (auto i : ntpl->GetViewRange()) {
h.Fill(viewPt(i));

(RDataFrame

Lauto df = ROOT: :Experimental: :MakeNTupleDataFrame("Events", "http://xrootd/f.root");

jblomer@cern.ch

RNTuple — CHEP 2019

4/13

Sample Analyses for Performance Benchmarking

LHCb run 1 open data B2ZHHH

H1 micro dst [x10]

CMS nanoAOD June 2019

= Dense reading (> 75 %):
18/26 branches

= Fully flat data model

= 8.5 million events
= 24k selected events

B_mass_copy

Eot T
D50 5100 5150 5200 5250 5300 5350 5400 5450 5500
My [MeV/c?]

= Medium dense reading
(~ 10%): 16/152 branches

= Event substructure: vector
of jets etc.

= 2.8 million events

= 75k selected events
dm_d

& 75250

01551
St Dev 0008494

L. I L L L L L
013" 0135 014 0145 015 0155 016 0165 017
M- M {GeVIC]

jblomer@cern.ch

RNTuple — CHEP 2019

= Sparse reading (< 1%):
6/1479 branches

= Event substructure: vector
of jets etc.

= 1.6 million events
= 141k selected events

CMS Open Data

V528 TeV. L (Grieh W cony

107
M, (Gev)

5/13

Storage efficiency for very simple data models

Storage Efficiency LHCb Run 1 Open Data B2HHH

Average event size [B]

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 6 /13

Storage efficiency for very simple data models

Storage Efficiency LHCb Run 1 Open Data B2HHH

As expected, RNTuple
TTree are Very close
dels.

and
for flat data mo

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 6 /13

Storage efficiency for very simple data models

Storage Efficiency LHCb Run 1 Open Data B2HHH

d, RNTuple
T T N — T

As expecte
TTree are Very
dels.

and
for flat data mo

est
Promising new o

m zstd', des-

. \gorith
sion alg for RNTu-

ignated default

ple.

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 6 /13

https://indico.cern.ch/event/773049/contributions/3474778/

Storage efficiency for events with substructure

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

Average event size [

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 7/13

g

trigger fields (bool).

.g Half of the RNTuple improvement
= through more efficient storage of collec-
% tions (addressed by TTree's exper'\menta\
o kGeneratefosetMap 1/0 flag). Other
g half through more efficient storage of
2

RNTuple / TTree

uncompressed

jblomer@cern.ch
RNTuple — CHEP 2019
7/13

g

trigger fields (bool).

.g Half of the RNTuple improvement
= through more efficient storage of collec-
% tions (addressed by TTree's exper'\menta\
o kGeneratefosetMap 1/0 flag). Other
g half through more efficient storage of
2

RNTuple space it

s survive

provement
compression-

RNTuple / TTree

uncompressed

jblomer@cern.ch
RNTuple — CHEP 2019
7/13

g

— see b i
ackup slides for "H1" plot

improvement

.g Half of the RNTuple

= through more efficient storage of collec-
% tions (addressed by TTree's exper'\menta\
o kGeneratefosetMap 1/0 flag). Other
g half through more efficient storage of
zZ trigger fields (bool).

RNTuple space I3

s survive

proveme“t
compression-

RNTuple / TTree

uncompressed

jblomer@cern.ch
RNTuple — CHEP 2019
7/13

Read speed for warm file system buffers (kernel memory) ﬁ

><106 MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

Events /s

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 8 /13

Read speed for

Events /s

RNTuple / TTree

2 erfor
MEMORY CACHEL Significant P

warm file system buffers (kernel memory)

eV June 2019

S

: ance gain from the

m .
............... faster deserialization

et 13T

uncompressed

jblomer@cern.ch

RNTuple — CHEP 2019

8/ 13

Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
il
'
'

Events /s

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 9/13

Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

: nd 1
Performance depe ‘ :
on deserialization: g

compression. and I/

scheduling.

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 9/13

Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

N
a d
Performance depend
on deseria\izatlon' eo ...
compression. and 1/O | N WSy

scheduling- 1 B corzstd | e

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 9/13

Read speed for NVMe SSD

— Same trend for "LHCb" and "H1" samples

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019

erformance depend

on deserialization, de- | N

compression. and 10 |

scheduling. | Sweet spot e I

RNTuple / TTree

uncompressed

jblomer@cern.ch RNTuple — CHEP 2019 9/13

Read speed with different bandwidth and latency profiles ﬁ

READ throughput using different physical data sources (zstd compressed)

%)
~ "LHCD" oL “oMS”
c .TTree ¥ TTree @ TTree
$ B rnTuple BJRNTUple

¥} T

........ L

)

)

L

'—

'_

-

Q

S

S

'_

Z

@

Solid State Disk Spinning Disk XRootD HTTP, 1GbE, 10ms

jblomer@cern.ch RNTuple — CHEP 2019 10 / 13

Read speed with different bandwidth and latency profiles

S

95% CL

pEa=—hroughput using different physical data sources (zstd compressed)
(2] = 1
\ /O “LHCD" "HL "CMS”
. inated by
is domina ™ T al
Performa“ceTT Cache RC\usterPOO‘)v =RNr:e | RNr:e | Erree
g ree 2 uple uple
SChedu‘mgd(minimize the number of :
. s to B UPPPY SRR PR UUPRPPPRS
which nee sfer volume. Becsnosaancscd

requests and the tran

Al

RNTuple / TTree

jblomer@cern.ch RNTuple — CHEP 2019

Q

Solid State Disk Spinning Disk XRootD HTTP, 1GbE, 10ms

10 /13

Full exploitation of SSDs by concurrent streams

RNTuple SSD READ throughput using concurrent streams

7 —
6 o —— uncompressed —— uncompressed —— UNCOMPressed [+« s wrsrseesesssenennne b B
~ = = zstd = = zstd = = zstd

Speed-up wrt. single stream

- 680 MB/s

0 | | | | | | |

1 2 4 8 16 32 64 warm cache
Streams

jblomer@cern.ch RNTuple — CHEP 2019 11 /13

Full exploitation of SSDs by concurrent streams

RNTuple SSD READ throughput using concurrent streams

ovements!

Factor 2-3 impr

i \tiple st
by using MY ;
reaching full SSD through

reams,

Speed-up wrt. single stream

7 —
6 o —— uncompressed —— uncompressed —— UNCOMPressed [+« s wrsrseesesssenennne b B
~ = = zstd = = zstd

700 MB/s

- 680 MB/s
oLl | | | | | |
1 2 4 8 16 32 64 warm cache
Streams
jblomer@cern.ch RNTuple — CHEP 2019

11 /13

Full exploitation of SSDs by concurrent streams

RNTuple SSD READ throughput using concurrent streams

7 —
- "LHCD" a1 "CMS"

6] = uncompressed = uncompressed = uncompressed |rorrrrrrerreereeeeriiiiiees
~ - = zstd - = zstd

ovements!

5 ctor 2-3 imPrOV e . . cluster
‘;a using multiple streams, nCMS" by multi-c

4 yaching full SSD through- read-ahead.
g ST EEEEEE . o e

Speed-up wrt. single stream

- 680 MB/s

0 | | | | | | |

1 2 4 8 16 32 64 warm cache
Streams

jblomer@cern.ch RNTuple — CHEP 2019 11 /13

First measurements with Optane NVDIMMs (“App Direct” mode)

x10°

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()

2
a1
|II

Events /s
S
o

w
a1

30

25

20

15

10

jblomer@cern.ch

|
..|[Mem. cached Optane SSD (16 StMS) |-+ +-nvveeeeersannnnnnees e e
'
' :
read read 1
Beo Weo | i |
: :
mmapo :
RO GL e SN B R & RIS
'
'
.. | R teesteseriesanenas
'
'
'
'

LHCb run 1 ope

TTJet 13TeV June 2019

ata BZHHH H1 micro DST

S |eseeeen
o fHEEE

RNTuple — CHEP 2019

S

12 /13

First measurements with Optane NVDIMMs (“App Direct” mode) ﬁ

XlOG RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()
(%] I
= _...k - e ed b ptane SSD (16 strms) :r
Benchmar . excel Jreaco .read() i
Optane throughput: 00 Ve Bomeg | R W B & SEUEERUUES
lent device for probing / mmap0 @mmapo :.
I T IR CL v oo eeeeeeeeeeees RONE B R EE ST
code path perform i '
S s ; o BN B
i | |
25 i [AUURURY U T JU0S - S [RENN BF BE BF SRR
L !
- gﬁ ... e 51 BN .
15 g% Bococoad bodiiibed bod'iihod booaocaaccaaccas
10— i - ggg :,
| :
> | :
o 10 - .
LHCb run 1 open data B2HHH H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

jblomer@cern.ch RNTuple — CHEP 2019 12 /13

First measurements with Optane NVDIMMs (“App Direct” mode) ﬁ

XlOG RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()
2 1
= Optane SSD (16 SUMS) | +-vveveereereeneennnns e - ol
chmark not limited b 2 i RNTuple gives acce_?s an
Be\'\t e throughput: excel- |read0 .read() S amapQ) tests: ROO Cf r
a | . 0
(\)pt device for probing 1/O mmepo [Jmmano i do better 1/O SCh.edu‘mgtom
e;‘lde path performance- GEYGCL " :. b|0ck dev'lCeS Wlth cus’
C B N F S Il ad() Ca“s'
- T o
20 JEEL —
L :
15 %ﬁ :r
igg :
10 gg :,
5 . g . ;gg :|
0 | :
H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

jblomer@cern.ch RNTuple — CHEP 2019 12 /13

Summary & Outlook

= RNTuple is exploring the 1/0O performance frontiers

= Optimized throughput starting from a blank piece of paper plus 25 years of
experience

= Simple, robust, intuitive ROOT7 user interface
= Significant speed-ups for simple event models

= Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready /0O subsystem!

jblomer@cern.ch RNTuple — CHEP 2019

Summary & Outlook

= RNTuple is exploring the 1/0O performance frontiers

= Optimized throughput starting from a blank piece of paper plus 25 years of
experience

= Simple, robust, intuitive ROOT7 user interface
= Significant speed-ups for simple event models

= Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready /0O subsystem!

Many thanks to CERN openlab and CERN IT for providing test hardware!

jblomer@cern.ch RNTuple — CHEP 2019

Backup Slides

Breakdown of the RNTuple Data Format

Dataset / File

—
Page C—++ collections become offset columns
) } struct Event {
r 1 : .
Cluster TiE el
vector<Particle> fPtcls;
};
struct Particle {
float fE;
vector<int> fIds;
b3
Cluster Page
= Block of consecutive complete events = Unit of memory mapping
= Unit of thread parallelization (read and write) = Unit of (de-)compression and (un)packing
= Unit of reading when seeks are expensive = Unit of reading when when seeks are cheap

= Typically tens of megabytes = Typically tens of kilobytes

	Appendix
	Backup Slides

