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The TTree 1/0

[ TTree's column-wise format addresses our very problem

= TTree /O speed and storage efficiency is significantly better

than industry products (JACATI

= Only few other formats can serialize the complexity of even
the simplest event models:
= Apache Parquet: optimized for sparse collections but
HEP data is not sparse

= Apache Arrow: only in-memory format but not on-disk
format

= ROOT's unique feature: seamless C++ integration,
users do not need to write or generate schema mapping
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Nested collections typical in HEP

struct Event {
std: :vector<Particle> fPtcls;

8

struct Particle {
std: :vector<Track> fTracks;

g

struct Track {
int fVertexId;
I8
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[ We want to ensure that ROOT 1/O continues to yield the most efficient analysis I/O
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RNTuple: The New Experimental ROOT 1/0O Subsystem ﬁ

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, ...)
grouped into (compressed) pages and clusters
RColumn, RColumnElement, RPage

Storage layer / byte ranges
RPageStorage, RCluster, RNTupleDescriptor
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Improve different parts
independently

Add new storage backends

= Physical: ROOT file container,
raw file, object store, NVRAM
= Virtual: “friend” and “chain”

Serialization of simple types and
STL collections built-in — can be
read without libCore
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RNTuple: The New Experimental ROOT 1/0O Subsystem

Event iteration
RNTupleDataSource (RDF), RNTupleView, RNTupleReader/Writer

TTree ~
TBranch ~
“Column TBasket =~
TTreeCache =~

Approximate translation:

RNTupleReader
RNTupleWriter

RField

RPage )
RClusterPool
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RNTuple format evolution

Key improvements in RN Tuple RNTuple’s type system
= More efficient storage of collections and sub = bool
collections

= Integers (signed and unsigned, 8bit to 64bit)
= On disk layout matches most modern « float double

in-memory layouts (little-endian)
= std::string
= Better control of /O memory utilization
= std::array

= Boolean values stored as bit field instead of

Sy sy = std::vector, VecOps: :RVec

. . = std::variant
Goal: slash memory copies and (virtual)

function calls in 1/0 code paths = Whatever other std type we want,
e.g. std: :chrono

= Classes with dictionaries

Fully composable within the type system
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RNTuple Interface Sketch: Reading Data

Populate User Objects

Zero-Copy

auto model = RNTupleModel::Create();
auto f1dPt = model->MakeField<float>("pt");
// Note: there is also a type-unsafe API

auto ntpl = RNTupleReader: :0Open(
std: :move(model), "Events", "f.root");

for (auto entryId : *ntpl) {
ntuple->LoadEntry(entryId);
h.Fill(*f1dPt);

auto ntpl =
RNTupleReader: :Open("Events", "f.root");
auto viewPt = ntpl->GetView<float>("pt");

for (auto i : ntpl->GetViewRange()) {
h.Fill(viewPt(i));

(RDataFrame

Lauto df = ROOT: :Experimental: :MakeNTupleDataFrame("Events", "http://xrootd/f.root");
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Sample Analyses for Performance Benchmarking

LHCb run 1 open data B2ZHHH

H1 micro dst [x10]

CMS nanoAOD June 2019

= Dense reading (> 75 %):
18/26 branches

= Fully flat data model

= 8.5 million events
= 24k selected events

B_mass_copy

Eot T
D50 5100 5150 5200 5250 5300 5350 5400 5450 5500
My [MeV/c?]

=  Medium dense reading
(~ 10%): 16/152 branches

= Event substructure: vector
of jets etc.

= 2.8 million events

= 75k selected events
dm_d
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= Sparse reading (< 1%):
6/1479 branches

= Event substructure: vector
of jets etc.

= 1.6 million events
= 141k selected events

CMS Open Data

V528 TeV. L (Grieh W cony

107
M, (Gev)
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Storage efficiency for very simple data models

Storage Efficiency LHCb Run 1 Open Data B2HHH

Average event size [B]

RNTuple / TTree

uncompressed
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Storage efficiency for events with substructure

Storage Efficiency CMS nanoAOD TTJet 13TeV June 2019

Average event size [

RNTuple / TTree

uncompressed
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Read speed for warm file system buffers (kernel memory) ﬁ

><106 MEMORY CACHED READ throughput CMS nanoAOD TTJet 13TeV June 2019

Events /s

RNTuple / TTree

uncompressed
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Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
il
'
'
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uncompressed
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Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
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Read speed for NVMe SSD

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
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Read speed for NVMe SSD

— Same trend for "LHCb" and "H1" samples

SSD READ throughput CMS nanoAOD TTJet 13TeV June 2019
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Read speed with different bandwidth and latency profiles ﬁ

READ throughput using different physical data sources (zstd compressed)
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Read speed with different bandwidth and latency profiles
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Full exploitation of SSDs by concurrent streams

RNTuple SSD READ throughput using concurrent streams
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Full exploitation of SSDs by concurrent streams

RNTuple SSD READ throughput using concurrent streams
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First measurements with Optane NVDIMMs (“App Direct” mode)

x10°

RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()
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First measurements with Optane NVDIMMs (“App Direct” mode) ﬁ
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First measurements with Optane NVDIMMs (“App Direct” mode) ﬁ

XlOG RNTuple OPTANE NVDIMM READ throughput uncompressed data with read() and mmap()
2 1
= Optane SSD (16 SUMS) | +-vveveereereeneennnns e - ol
chmark not limited b 2 i RNTuple gives acce_?s an
Be\'\t e throughput: excel- |read0 .read() ........................ S amapQ) tests: ROO Cf r
a | . 0
(\)pt device for probing 1/O  mmepo [Jmmano i do better 1/O SCh.edu‘mgtom
e;‘lde path performance- ....................... GEYGCL " :. ...... b|0ck dev'lCeS Wlth cus’
C B N F S Il ...... ad() Ca“s' .......
- T o
20 JEEL —
L :
15 %ﬁ ................... :r ......
igg :
10 gg ................... :, ......
5 . g . ;gg ............... :| ......
0 | :
H1 micro DST CMS nanoAOD TTJet 13TeV June 2019

jblomer@cern.ch RNTuple — CHEP 2019 12 /13



Summary & Outlook

= RNTuple is exploring the 1/0O performance frontiers

= Optimized throughput starting from a blank piece of paper plus 25 years of
experience

= Simple, robust, intuitive ROOT7 user interface
= Significant speed-ups for simple event models

= Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready /0O subsystem!
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= RNTuple is exploring the 1/0O performance frontiers

= Optimized throughput starting from a blank piece of paper plus 25 years of
experience

= Simple, robust, intuitive ROOT7 user interface
= Significant speed-ups for simple event models

= Sneak preview released with ROOT 6.18
lots of exciting work ahead towards a production-ready /0O subsystem!

Many thanks to CERN openlab and CERN IT for providing test hardware!
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Backup Slides




Breakdown of the RNTuple Data Format

Dataset / File

—
Page C—++ collections become offset columns
) } struct Event {
r 1 : .
Cluster TiE el
vector<Particle> fPtcls;
};
struct Particle {
float fE;
vector<int> fIds;
b3
Cluster Page
= Block of consecutive complete events = Unit of memory mapping
= Unit of thread parallelization (read and write) = Unit of (de-)compression and (un)packing
= Unit of reading when seeks are expensive = Unit of reading when when seeks are cheap

= Typically tens of megabytes = Typically tens of kilobytes
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