

A GNSS measurement for High School Students of EEE Project

Marina Trimarchi

Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Roma

Dipartimento MIFT, Università degli Studi di Messina

INFN – Sezione di Catania

EEE Meetings for Students

(9.5m

EEE Run Coordination Meeting open to schools ₩ Wednesday 5 Jun 2019, 14:30 → 16:05 Europe/Rome Introduzione **3** 5m Speaker: Silvia Pisano (Centro Fermi) (10m Speaker: Marcello Abbrescia (Università di Bari) 14:55 Analisi dell'Asimmetria e della Curtosi degli istogrammi relativi alla velocità dei muoni **3** 10m Speaker: Liceo Scientifico "Cavour" - Roma 15:05 Cosmic Box measurements **3** 10m Speaker: Liceo Scientifico "G. Galilei" - Lanciano 15:15 Costruzione delle camere del rilevatore del raggi cosmici al CERN **3**10m Speaker: Liceo Scientifico "A. Volta" - Reggio Calabria + 15:25 Stima della durata del freon tramite equazioni di stato del gas (10m Speaker: Liceo Scientifico B. Touschek - Grottaferrata 15:35 Misura automatica di tensione e corrente delle camere **③** 10m Speaker: IIS Nobili - Reggio Emilia

- Coordination Meetings
- Students report about their activity on EEE
- Status and Maintenance of the Telescopes, Data Analysis, Questions and Discussions
- General Lessons from EEE researchers
- Hardware, Software, Organization of events

Conferences of EEE project

15:40 Oggi spiego io! - Dialogo sopra i minimi sistemi del mondo

- Students describe their activities
- General Lessons and Masterclasses

Speaker: Liceo Moretti (sede associata IIS C. Beretta) - Gardone Val Trompia

- Students in groups perform measurements and data analysis and report about their work
 - Prizegiving for best contributions and analysis

10° Conference of CF Projects Turin, March 6-8, 2019

In collaboration with Dr. M. Sellone and Dr. G.Cerretto Istituto Nazionale di Ricerca Metrologica

Global Navigation Satellite System

Simulation of GNSS functioning by measuring the range between local representative receiver and satellites

How a GNSS works

- 4 satellites in view
- Solve 4 non linear equations to get position and time
- Distance measurements
 - through the time of flight of a signal sent by a transmitter on the satellite
 - Δt between clock on satellite and on receiver

10° Conference of CF Projects Turin, March 6-8, 2019

Exercise for students:

- Put 3 simulated satellites on a cartesian reference
 - Simple positions: on the intersections between walls
- Use a laser distance meter to measure their positions
 - $(x_A, y_A, z_A), (x_B, y_B, z_B), (x_C, y_C, z_C)$
- Measure your distances from the 3 satellites
 - d_A, d_B, d_C

The laser distance meter uses the time of flight of a laser to compute distances

→Then the signal is transmitted and received by the same instrument

→ As the receiver and the satellite clocks are sinchronized → Only 3 range measurements required

- Compute your position by inverting the equations of distances
- Check the results with an "actual measurement" → rule, laser meter, etc.

$$R_A = \sqrt{(x - x_A)^2 + (y - y_A)^2 + (z - z_A)^2}$$

$$R_B = \sqrt{(x - x_B)^2 + (y - y_B)^2 + (z - z_B)^2}$$

$$R_C = \sqrt{(x - x_C)^2 + (y - y_C)^2 + (z - z_C)^2}$$

10° Conference of CF Projects Turin, March 6-8, 2019

Example of Results

- Python Code developed by Dr. V.Pettiti (INRIM)
 - 2 points \rightarrow P1 and P2

	1	A	В	C	D	E	F	G	H	- 1	J	K	L
	1	Distanze misurate			Posizione stimata			Posizione misurata			Scostamento		
	2	d_A	d _B	dc	x	у	z	x	y	z	Δx	Δy	Δz
	3	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]	[m]
_	4												
1	5	5.54	4.29	4.37	1.46	2.50	0.38	1.45	2.51	0.45	-0.01	0.01	0.07
	6												
1	7	4.12	4.72	5.55	3.13	1.74	0.48	3.18	1.78	0.45	0.05	0.04	-0.03
	8	4.13	4.78	5.56	3.18	1.79	0.46	3.18	1.78	0.45	0.00	-0.01	-0.01
2	9	4.12	4.75	5.54	3.16	1.78	0.48	3.18	1.78	0.45	0.02	0.00	-0.03
	10	4.13	4.74	5.55	3.15	1.76	0.47	3.18	1.78	0.45	0.04	0.02	-0.02
1	11	4.13	4.75	5.55	3.15	1.77	0.47	3.18	1.78	0.45	0.03	0.01	-0.02

- Compare
 - Estimated Coordinates (given by the code)
 - Measured Coordinates (obtained by an instrument)

- Max observed deviation \rightarrow 5 cm
 - Uncertainties of the same order of magnitude in satellite positions
 - Not complete orthogonality of the walls

A good method for didactic experiment!

Useful links

- General lessons:
 - https://agenda.centrofermi.it/event/120/contributions/1041/
 - https://agenda.centrofermi.it/event/120/contributions/1042/
- Python code:
- ***If you plan to use code, please cite author: "Valerio Pettiti (INRIM)""****
 - https://indico.cern.ch/event/855335/contributions/3627925/attachments/1953452/3244196/Simula GPS Pettit
 i EEE.py