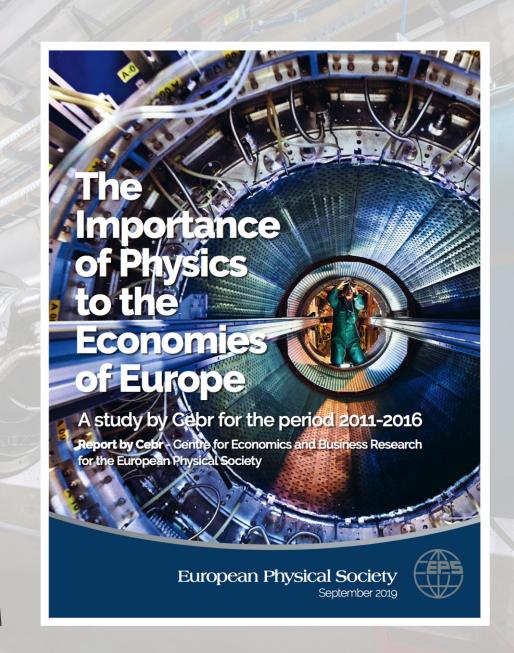
JENAS 2019 What is the societal IMPACT of particle physics? Manuela Cirilli **Knowledge Transfer** Accelerating innovation CERN Knowledge Transfer Group

SCOAP³ – Sponsoring Consortium for Open Access Publishing in Particle Physics

Home What is SCOAP³ SCOAP³ Partners SCOAP³ Journals SCOAP³ Repository FAQs Resources Contact Search Q

SCOAP³ is a global partnership of 3,000 libraries, funding agencies and research institutions from 46 countries and Intergovernmental Organizations.


TABL

FOREWORD.. EXECUTIVE SUMMARY Section A. Rationale, background and objecti Section B. Methodology Section C. Impact categories Category I. Purely scientific results, intende Category II. The direct and indirect impacts Category III. Training for scientists, enginee Category IV. Achieving national, regional ar operation.... Categories V and VI. These categories are tre Section D. Case studies of selected CERN impa Section D.1 Case study: LHC main ring dipol Section D.1.a Rationale for this case study Section D.1.b Background and incentives for Section D.1.c Dipole magnet research and d Section D.1.d Procurement, manufacturing a Section D.1.e Conclusions concerning the di CERN as a generator of technological cha Risk management and governance... The role of external entities Section D.2 Case study: hadron cancer therapy Section D.2.a Introduction to hadron therapy. Section D.2.b History of CERN's involvement Section D.2.c Recent developments and prosp Section D.2.d Conclusions concerning hadron CERN as an enabler of innovation ... Governance and operations CERN as a pan-European institution... Section D.3 Case study: software packages. Section D.4 Education and outreach (impact Cate Section E. Knowledge transfer Section F. General observations Status of CERN as a European organisation.... Operations and governance REFERENCES. APPENDIX A. MEMBERS OF THE INTERNATION DELEGATIONS. APPENDIX B. LIST OF INTERVIEWED EXPERTS. APPENDIX C. INTRODUCTION TO THE SCIENTIFI APPENDIX D. OPERATIONAL HADRON THERAPY APPENDIX E. HADRON THERAPY FACILITIES ARC

The Impacts of Large Research Infrastructures on Economic Innovation and on Society:

Case Studies at CERN

APPENDIX F. ABOUT THE OECD GLOBAL SCIENCE

CONSTRUCTION OR PLANNED ...

Cost-Benefit Analysis of the Large Hadron Collider to 2025 and beyond

Massimo Florio¹, Stefano Forte², and Emanuela Sirtori³

 Dipartimento di Economia, Management e Metodi Quantitativi, Università di Milano, via Conservatorio 7, I-20122 Milano, Italy
 TIF Lab, Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano, Italy
 CSIL, Centre for Industrial Studies
 Corso Monforte 15, I-20122 Milano, Italy

Abstract

Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, including climate change. It is often argued that it is impossible to extend the CBA approach to the evaluation of the social impact of research infrastructures, because the final benefit to society of scientific discovery is generally unpredictable. Here, we propose a quantitative approach to this problem, we use it to design an empirically testable CBA model, and we apply it to the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by determining their value to users (scientists, early-stage researchers, firms, visitors) and non-users (the general public). Four classes of contributions to users are identified: I nowledge output, human capital development, technological spillovers, and cultural effects. Benefits for non-users can be estimated, in analogy to public goods with no practical use (such as environment preservation), using willingness to pay. We determine the probability distribution of cost and benefits for the LHC since 1993 until planned decommissioning in 2025, and we find there is a 92% probability that benefits exceed its costs, with an expected net present value (NPV) of about 3 billion €, not including the unpredictable economic value of discovery of any new physics. We argue that the evaluation approach proposed here can be replicated for any large-scale research infrastructure, thus helping the decision-making on competing projects, with a socio-economic appraisal complementary to other evaluation criteria.

We determine the probability distribution of cost and benefits for the LHC since 1993 until planned decommissioning in 2025, and we find there is a 92% probability that benefits exceed its costs, with an expected net present value of about 3 billion euro, not including the unpredictable economic value of discovery of any new physics.

Additional reading:

Schopper, Herwig, 2016. "Some remarks concerning the cost/benefit analysis applied to LHC at CERN," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 54-64.

E Pugliese, G Cimini, A Patelli, A Zaccaria, L Pietronero, A Gabrielli, Unfolding the innovation system for the development of countries: coevolution of Science, Technology and Production, arXiv preprint arXiv:1707.05146

A Patelli, G Cimini, E Pugliese, A Gabrielli, The scientific influence of nations on global scientific and technological development, Journal of Informetrics 11, 1229-1237 (2017)

Over 70 companies and institutes produce accelerators for industrial applications; these organizations sell more than 1,100 industrial systems per year — almost twice the number produced for research or medical therapy — at a market value of \$2.2B.

Over \$1B of this amount is generated by the sales of accelerators for ion implantation into materials — primarily semiconductor devices — whose worldwide value of production is about \$300B.

Hamm, R. and Hamm, M. (2012). Industrial accelerators and their applications. World Scientific Publishing Co.

As of 2014 there were 42,200 accelerators worldwide: 27,000 (64%) in industry, 14,000 (33%) for medical purposes 1,200 (3%) for basic research.

These figures exclude electron microscopes and x-ray tubes, and the security and defense industries.

Chernyaev, A. P. and Varzar, S. M. (2014). Particle accelerators in modern world. Physics of Atomic Nuclei, 77(10):1203–1215.

Knowledge Transfer Channels

Dedicated actions to **foster the transfer of technologies and know-how** to other fields than particle physics (very often with the involvement of industry)

Technology-intensive procurement contracts

People

(very hard to quantify but extremely impactful for particle physics)

KNOWLEDGE TRANSFER through PROCUREMENT

Survey of companies involved in technology-intensive procurement contracts with CERN.

178 questionnaires analyzed, related to 503 MCHF procurement budget.

Technological learning	44%
Increased international exposure	42%
Developed new products	38%
Market learning	36%
Started new R&D teams	13%
Would have poorer technological performance without CERN	41%
Would have poorer sales performance without CERN	52%

Dimensione impatto	% risposte positive/tot questionari				
Technological competences	31%				
Increased sales	28%				
Positive return on image	25%				
New partnerships/coolaborations	21%				
Market learning	17%				
New clients	14%				
New activities	13%				
Higher market shares	12%				
New markets	11%				

Salary Differences Between Master's and Ph.D. Graduates

Average Work-Life Earnings After a Bachelor's Degree							
Major	Bachelor's Degree	Master's Degree	Doctorate Degree	% Difference in Doctorate/Master's Earnings			
Biological Science	\$2,288,000	\$2,757,000	\$3,511,000	27%			
Business	\$2,563,000	\$3,257,000	\$3,535,000	9%			
Communications	\$2,333,000	\$2,552,000	\$3,306,000	30%			
Computers and Math	\$3,044,000	\$3,541,000	\$3,890,000	10%			
Education	\$1,798,000	\$2,260,000	\$2,802,000	24%			
Engineering	\$3,349,000	\$3,918,000	\$4,176,000	7%			
Liberal Arts	\$2,046,000	\$2,448,000	\$2,705,000	10%			
Literature	\$2,083,000	\$2,444,000	\$2,755,000	13%			
Physical Science	\$2,527,000	\$3,193,000	\$3,825,000	20%			
Psychology	\$2,001,000	\$2,366,000	\$3,157,000	33%			
Science and Engineering Related	\$2,587,000	\$2,925,000	\$3,814,000	30%			
Social Science	\$2,406,000	\$2,986,000	\$3,490,000	17%			
Visual Arts	\$1,966,000	\$2,227,000	\$2,545,000	14%			

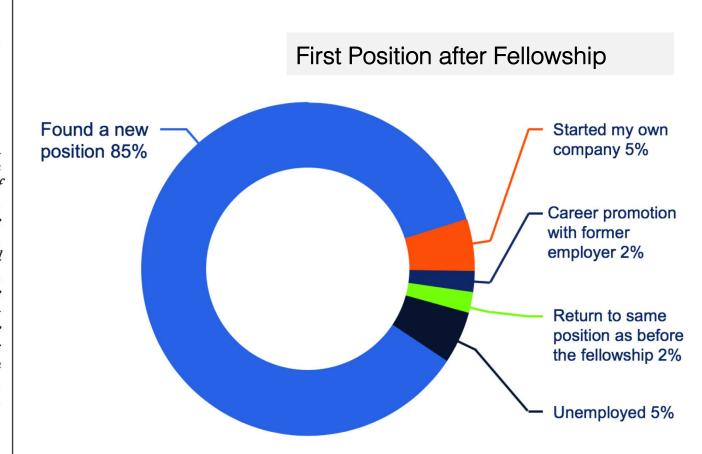
Note: This chart is for 25-64 year olds who are working full-time, year round

Source: www.census.gov

Today: >3000 PhD students in LHC experiments

THE EUROATLANTIC UNION REVIEW, Vol. 1 No. 2/2014

2007-2012: 831 Fellows finished their Fellowships

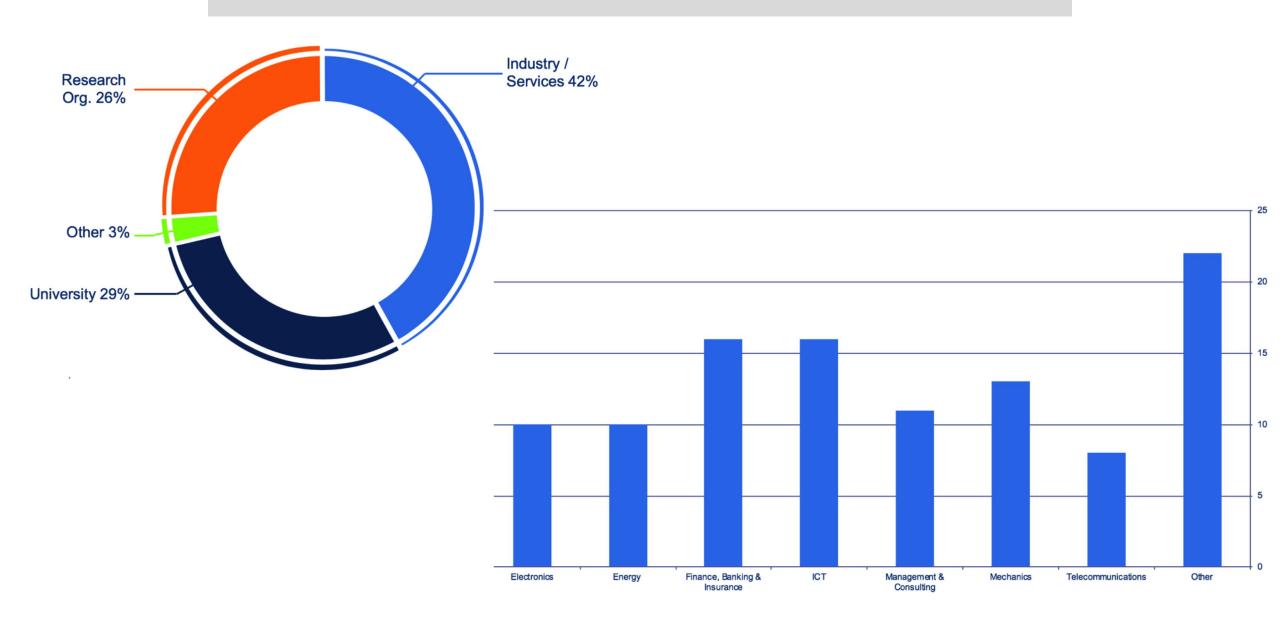

The study targeted the 288 (38%) former fellows that did not have any affiliation (staff, student, user, etc.) with CERN at time of the survey

Basic Research, Knowledge Transfer and Labor Market: Evidence from CERN's Fellowship Programs

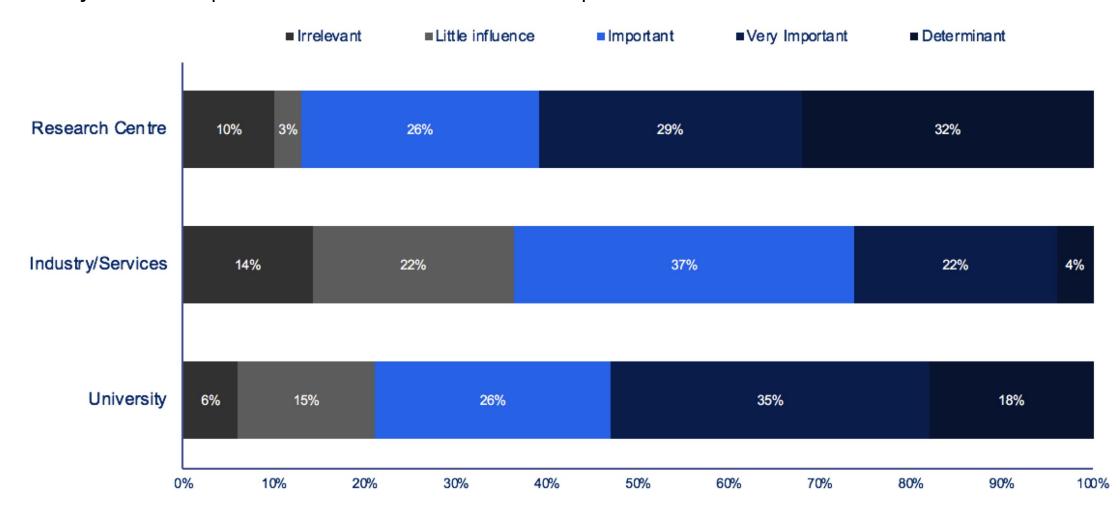
Silvia Bruzzi* and Giovanni Anelli**

Abstract. Nowadays, investing in scientific research to produce knowledge is considered a main asset for winning competition and contributing to the creation of economic value for the benefit of global society. Among the different phases of R&D, basic research stands out for its very high costs, risks and a time horizon of long/very long term. Nonetheless, if well-governed, it represents the component of R&D more able to produce positive externalities at a global level. In this framework, this paper aims to focus on the wide socio-economic value generated by basic research, conceived as an irreplaceable engine of innovation. In order to measure the performance of basic research, the paper proposes to refer to the outcome of research activity, i.e. the advancement of knowledge diffused by and through people, and discuss the results of a survey developed at CERN on the past-CERN Fellows, in order to isolate the contribution of the Fellowship Programs of CERN to the Fellows' professional career, in primis in industry. Our findings testify that basic research produces a continued scientific fertilisation effect of the global economic system, contributing to the creation of high skilled and professionalized human resources to the benefit of industry and other employers, so generating positive externalities wider than those measured in terms of patents and publications, the metrics traditionally used to measure the performance of research.

Keywords: Basic Research; Knowledge Transfer; Labor Market; CERN.



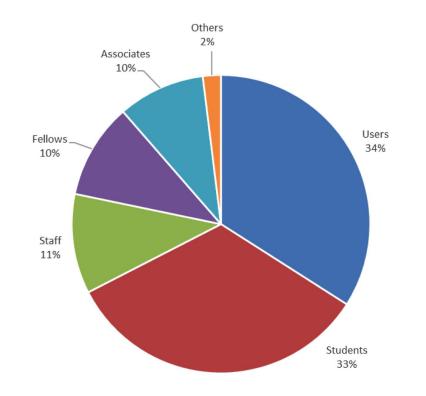
Georges
Charpak
researcher &
entrepreneur



First Position after Fellowship

First Position after Fellowship

How important was the CERN fellowship to secure your first position after the fellowship?



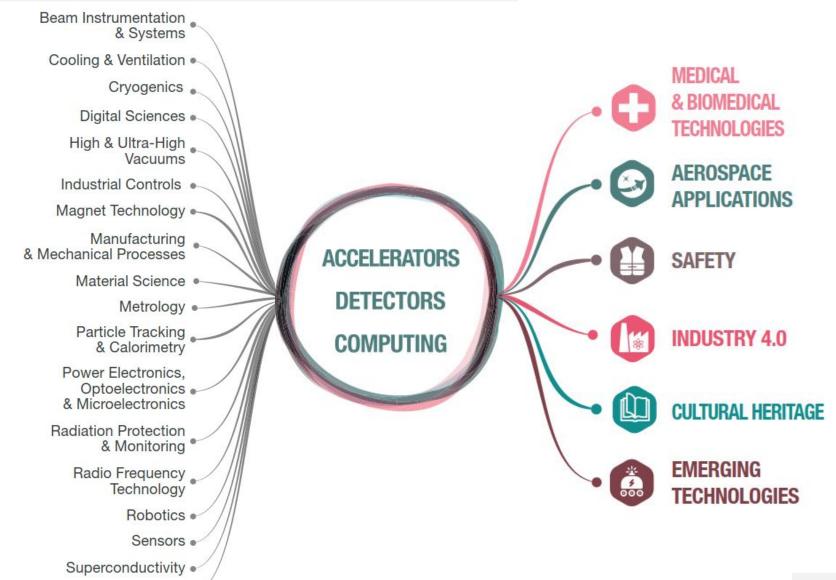
The CERN alumni network

- √ 67% alumni
- √ 19% to leave within a year
- ✓ 23% women
- √ 57% between 21 and 35

5400 today

- √ 77% former users,
 associates or students
- ✓ 10% former fellows
- √ 66% are nationals from a MS
- ✓ IT, FR, DE, GB, US ES, GR, CH, PL nationals are most represented

- ✓ Spread over 99 countries
- ✓ 68% live & work in the Member States
- ✓ Mostly CH, FR, US, GB, DE, IT, ES


Join at https://alumni.cern/signup

From particle physics technologies...

Testing Facilities •

...to Society

sound reproduction data management

testing satellite components astronauts' radiation exposure

food sterilization

understanding turbulence medical implants homeland security

finding oil, gas, water scientific linux spacecraft shielding

medical imaging

curing of epoxies and plastics x-ray diffractometry radiology

medical equipment sterilization

non-destructive testing

ion implantation

PET

shrink wrap terrestrial reproduction of space radiation

medical radioisotopes

rad-hard electronics simulations

optimised irrigation systems

industry 4.0

digital data preservation

open hardware

industrial control systems

treatment planning systems space application

power transmission

analysis of satellite data

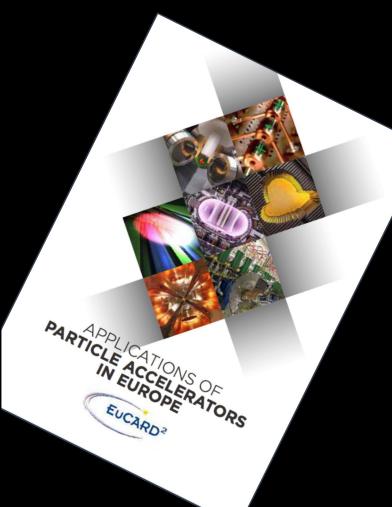
volcano tomography

sealing food packages

autonomous vehicles

smoke detectors hadron therapy

cultural heritage MR cleaner air and water


cargo screening ink curing

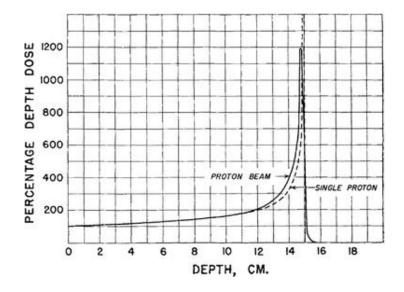
computer chips manufacturing

medical dosimetry material science

studying the retina

Area	Application	Beam	Accelerator	Beam ener- gy/MeV	Beam current/ mA	Number
Medical	Cancer therapy	е	linac	4-20	10-2	>14000
		р	cyclotron, synchrotron	250	10-6	60
		С	synchrotron	4800	10-7	10
	Radioisotope production	р	cyclotron	8-100	1	1600
Industrial	lon implantation	B, As, P	electrostatic	< 1	2	>11000
	lon beam analysis	p, He	electrostatic	<5	10-4	300
	Material processing	е	electrostatic, linac, Rhodatron	≤10	150	7500
	Sterilisation	е	electrostatic, linac, Rhodatron	≤ 10	10	3000
Security	X-ray screening of cargo	е	linac	4-10	?	100?
	Hydrodynamic testing	е	linear induction	10-20	1000	5
Synchrotron light sources	Biology, medicine, materials science	е	synchrotron, linac	500-10000		70
Neutron scattering	Materials science	р	cyclotron, synchrotron, linac	600-1000	2	4
Energy - fusion	Neutral ion beam heating	d	electrostatic	1	50	10
	Heavy ion inertial fusion	Pb, Cs	Induction linac	8	1000	Under development
	Materials studies	d	linac	40	125	Under development
Energy - fission	Waste burner	р	linac	600-1000	10	Under development
	Thorium fuel amplifier	р	linac	600-1000	10	Under development
Energy - bio-fuel	Bio-fuel production	е	electrostatic	5	10	Under development
Environmental	Water treatment	е	electrostatic	5	10	5
	Flue gas treatment	е	electrostatic	0.7	50	Under development

Berkeley


1931 Invention of cyclotron (Ernest Lawrence)

1946 RR Wilson published his seminal paper on particle therapy

1952 First biological investigation with accelerated nuclei (C Tobias and JH Lawrence)

1954 First therapeutic exposure of humans to protons and alphas (Tobias and JH Lawrence)

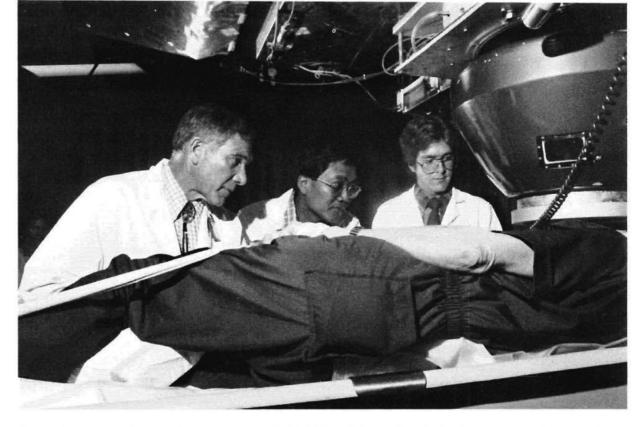
1975 Clinical trials with accelerated light ions at LBL (Castro)

Gustav Werner Institute and Theodor Svedberg Laboratory

1949 Synchrocyclotron at the Gustav Werner Institute (Uppsala) 1950s Pre-therapeutic physical experiments with high energy protons (B. Larsson)

1957 First patient treated with proton beam

π^{-} beam therapy


1935 Yukawa theory on pi meson

1947 Discovery of pions

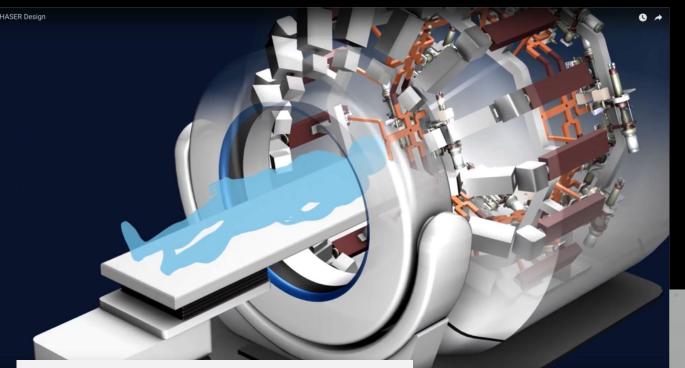
1951 Possibility of using negative pions for cancer therapy (Tobias and Richman)

1961 Clinical use of π^- advocated (Fowler and Perkins, Nature 1961)

'70-'80s Clinical trials of negative pions at LAMPF, TRIUMF, PSI and Stanford

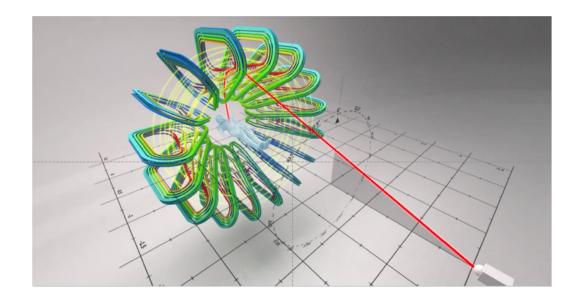
In a pilot experimental program at LAMPF's Biomedical Facility, about 250 patients were treated with negative pions for a variety of advanced deep-seated tumors. Compared to conventional x-ray therapy, pion therapy is expected to provide improved dose localization and biological effectiveness. Shown positioning a patient under the pion radiotherapy beam are (left to right) Dr. Morton Kligerman, former Director of the University of New Mexico's Cancer Research and Treatment Center, a visiting radiotherapist from Japan, and Dr. Steven Bush, formerly of the University of New Mexico. The hardware at the upper right includes a beam collimator, a dose monitor, and a device for changing the penetration depth of the pions.

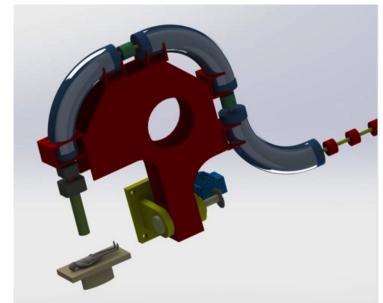
From the PIMMS Study @ TERA

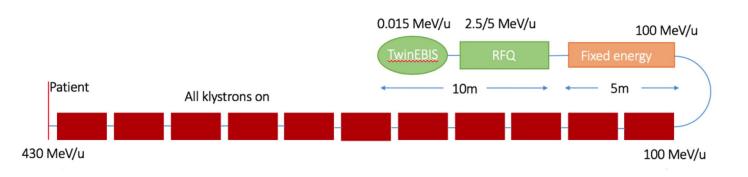


From pioneering rasterscanning & carbon ion pilot project @ **F**

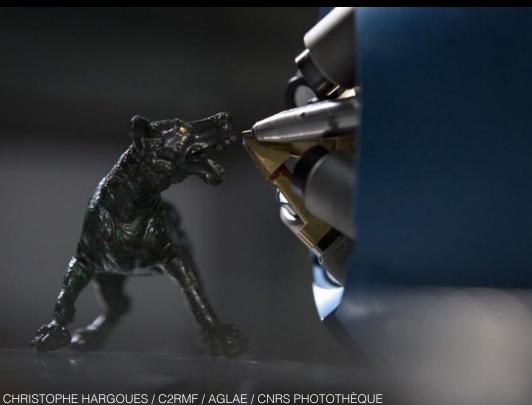

Flash radiation therapy


PHASER - SLAC/Stanford Varian IBA Linear accelerators for proton therapy


LIGHT - ADAM/ AVO TOP-IMPLART - ENEA



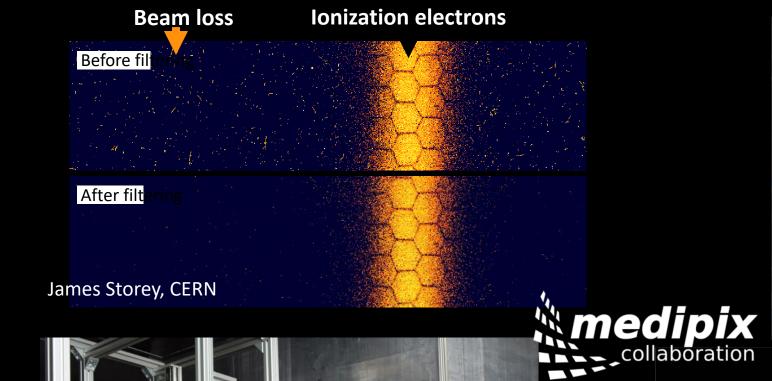
Next-generation ion therapy facilities



several initiatives starting/ongoing involving (among others) CERN, CNAO, GSI, MedAustron, PSI, SEEIST...

Yann Caradec, CC BY-NC-SA 2.0 Jean-Pierre Dalbéra [CC BY 2.0], wikimedia commons

New AGLAÉ – Accélérateur Grand Louvre d'Analyse Élémentaire



CENTRE DE
RECHERCHE
ET DE
RESTAVRATION
DES MVSÉES
DE FRANCE

European Space Agency

Geant4 Space Users' Home Page &

ESA Project Support

XMM-Newton Radiation Environment ...

Space Environment Information System (SPENVIS) №

Dose Estimation by Simulation of the ISS Radiation Environment (DESIRE) №

Physics Models for Biological Effects of Radiation and Shielding

Geant4 Radiation Analysis for Space (GRAS)

MUlti-LAyered Shielding Simulation Software (MULASSIS)

GLAST

Gamma Ray Large Area Space Telescope

MEGAlib

Medium Energy Gamma-ray Astronomy library

Space applications

G4DNA ₽

Geant4-DNA project

G4MED (in Japanese)

Geant4 Medical Physics in Japan

G4NAMU ₽

Geant4 North American Medical User Organization

GAMOS ₽

Geant4-based Architecture for Medicine-Oriented Simulations

Medical

applications

GATE ₽

Geant4 Application for Tomographic Emission

GHOST

Geant4 Human Oncology Simulation Tool

TOPAS P

Geant4 Monte Carlo Platform for Medical Applications

+ industrial applications

Notably, non-destructive testing

NATURE | NEWS FEATURE

Radioisotopes: The medical testing crisis

With a serious shortage of medical isotopes looming, innovative companies are exploring ways to make them without nuclear reactors.

Richard Van Noorden

11 December 2013

Rights & Permissions

Radioisotopes & Nuclear Medicine

Established isotopes -> Industrial suppliers

99mTc, ¹⁸F, ^{123,125,131}I, ¹¹¹In, ⁹⁰Y

Emerging isotopes -> Small innovative suppliers

⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹⁷⁷Lu, ¹⁸⁸Re

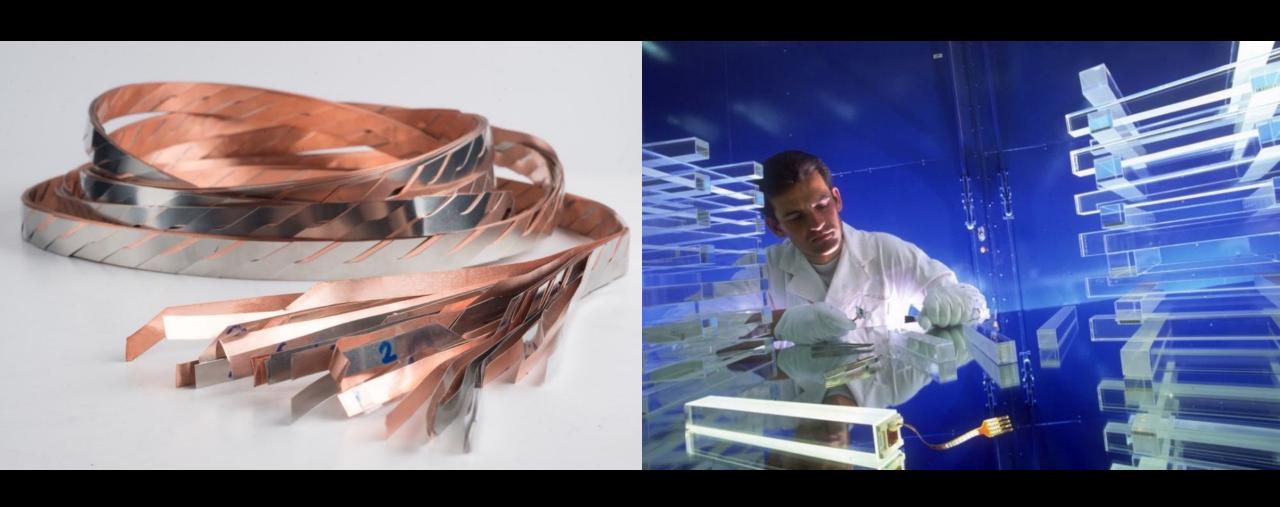
R&D isotopes

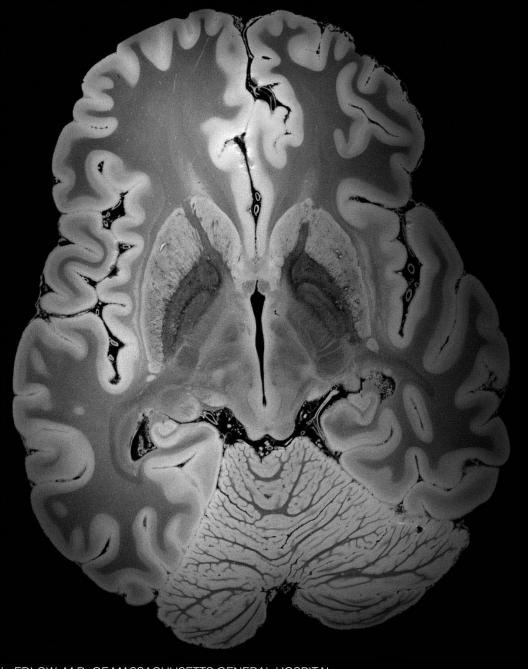
→ Research labs

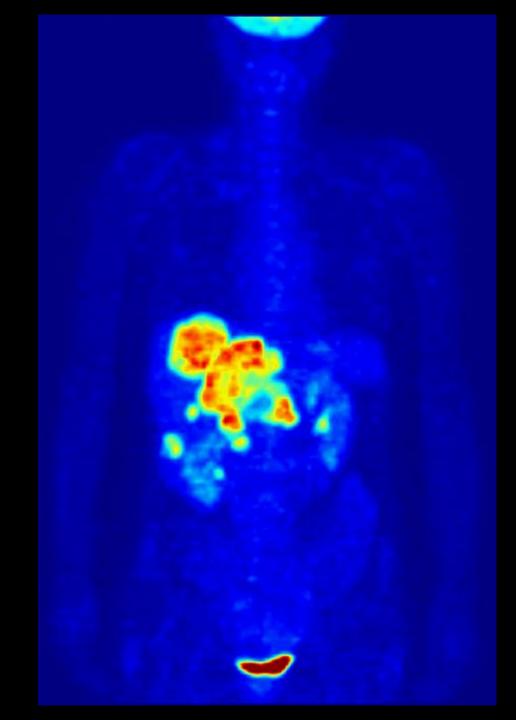
^{44,47}Sc, ^{64,67}Cu, ¹³⁴Ce, ¹⁴⁰Nd, ^{149, 152, 155, 161}Tb, ¹⁶⁶Ho, ^{195m}Pt, ²¹¹At, ^{212, 213}Bi, ²²³Ra, ²²⁵Ac,...

PRISMAS-MAP:

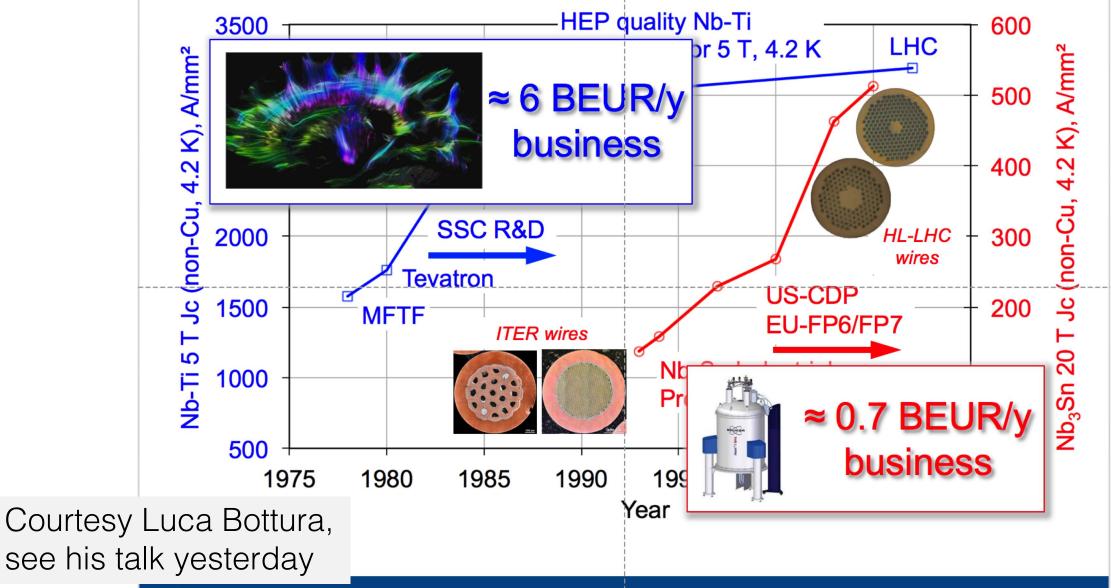
PRoduction of hIgh purity iSotopes by MAss Separation for Medical Application


Next H2020-INFRA call

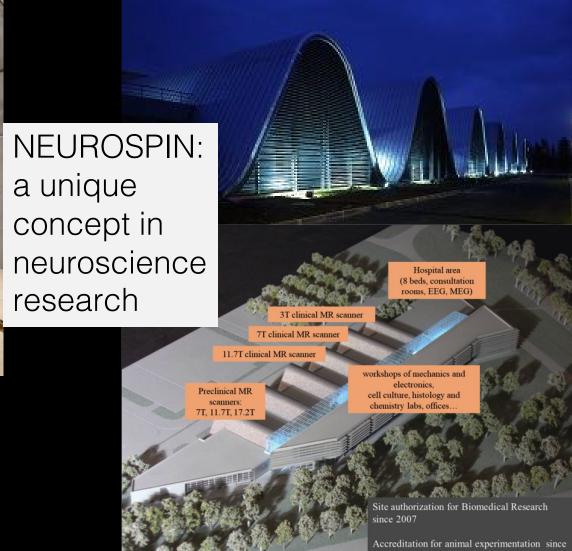

Inspired by the NIDC



Courtesy of / contact Thierry.stora@cern.ch


A long and winding road...

BRIAN L. EDLOW, M.D. OF MASSACHUSETTS GENERAL HOSPITAL


The ISEULT whole body 11.7 T MRI magnet

The ISEULT project - a French-German initiative

Full field of 11.72 teslas achieved the 18th of July 2019

How do we MAXIMISE IMPACT?

SCIENCE AND TECHNOLOGY BRIEFINGS

Briefing n° 12 —

Large particle accelerators

February 2019

Ring segment of a particle accelerator © fotonat67 / Adobe Stock

Summary

- Particle accelerators, like other kinds of "very le (VLRI), make it possible to manage cutting-ed strategic issues: acquiring knowledge, enhance preparing for technological breakthroughs, scientification.
- CERN, the European particle physics laboral biggest circular particle accelerator in the worthehighest energies produced to date.
- A decision by the Japanese government is exaccelerator project, the ILC, proposed sinscientific community.
- Thinking on the future European strategy for particle physics began in 2018 and should be presented in spring 2020. If the Japanese government confirms its interest in ILC, this European strategy must take account of this fact: a possible contribution from Europe, and particularly France, must be assessed in terms of scientific return, cost and industrial benefits.

the creation of the World Wide Web (WWW) in 1989⁽²¹⁾ under the leadership of Tim Berners-Lee and his collaborator Roger Cailliau. It was originally a response to researchers' need to exchange a high volume of data simply and instantaneously for international collaborations. CERN published coftware

Mr. Cédric Villani, MP (National Assembly), First Vice-Chairman

The Usefulness of Useless Knowledge

ABRAHAM FLEXNER

With a companion essay by ROBBERT DIJKGRAAF

In the end, utility resulted, but it was never a criterion to which his (*Faraday's*, *ndr*) ceaseless experimentation could be subjected.

I am not for a moment suggesting that everything that goes on in laboratories will ultimately turn to some unexpected practical use or that an ultimate practical use is its actual justification. Want to know more?

Visit http://kt.cern

Sign-up to the CERN Knowledge Transfer newsletter http://kt.cern/newsletter

Contact kt@cern.ch

Manuela.Cirilli@cern.ch

Join the CERN alumni network https://alumni.cern/signup

If you need highly sought after talents, post your job opportunities at https://alumni.cern/recruiter/jobs/new