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Effective theory for the top pair
productions

Based on

C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, "Non-resonant
New Physics in Top Pair Production at Hadron Colliders"’, JHEP, vol. 03, p. 125,

2011, 1010.6304.

C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni, and G. Servant, "An effective
approach to same sign top pair production at the LHC and the forward-backward

asymmetry at the Tevatron", 2011, 1104.1798.

Top quark physics is among the central physics topics at the Tevatron and at the LHC.
The top being the only quark with a coupling to the Higgs of order one, it is expected
to play a special role in electroweak symmetry breaking and as a result its coupling
to new physics could be large. Searching for beyond the SM physics in observables
involving the top quark is, therefore, strongly motivated. Moreover, the discrepancy
between the measured forward-backward asymmetry and its SM prediction tends to
confirm this theoretical presumption.
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A basis of dimension-eight operators for anomalous neutral

triple gauge boson interactions

Celine Degrande
Department of Physics, University of Illinois at Urbana-Champaign

1110 W. Green Street, Urbana, IL 61801, USA

Abstract

Four independent dimension-eight operators give rise to anomalous neutral triple
gauge boson interactions, one CP-even and three CP-odd. Only the CP-even operator
interferes with the Standard Model for the production of a pair of on-shell neutral
bosons. However, the effects are found to be tiny due mainly to the mismatch of the Z
boson polarization between the productions from the SM and the new operator.

1 Introduction

The recent discovery of the Higgs boson has increased the confidence in the validity of
the Standard Model (SM). On the other hand, the remaining issues of the SM like the
absence of a dark matter candidate claim for new physics. This dilemma can only be solved
experimentally by either directly searching for new particles or by looking for deviations
from the SM predictions. In this article, we use the well motivated effective field theory
(EFT) approach to pin down the expected first deviations from heavy new physics on the
neutral triple gauge couplings (nTGC).
Anomalous neutral gauge couplings have been actively searched for at LEP [1, 2, 3], at the
Tevatron [4, 5] and at the LHC [6, 7]. The constraints are given following the parametrization
of the anomalous vertices for the neutral gauge bosons [8, 9, 10, 11]

ieΓαβµ
ZZV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

[
fV
4 (qα3 g

µβ + qβ3g
µα)− fV

5 ϵµαβρ(q1 − q2)ρ
]
, (1)

ieΓαβµ
ZγV (q1, q2, q3) =

−e(q23 −m2
V )

M2
Z

{

hV1 (q
µ
2g

αβ − qα2 g
µβ) +

hV2
M2

Z

qα3 [(q3q2)g
µβ − qµ2qβ3 ]

− hV3 ϵ
µαβρq2ρ −

hV4
M2

Z

qα3 ϵ
µβρσq3ρq2σ

}

(2)

where V is a photon or a Z boson and is off-shell while the two other bosons are on-shell.
The parametrization of those vertices has been extended for off-shell bosons in ref. [10]. So
far, the size of the fV

i and hVi coefficients is unknown. They have be computed or estimated
for some extensions of the SM [10, 12]. Alternatively, their size as well as their dependence
in a smaller number of parameters can be obtained for any heavy new physics model using
EFT [13]. As a matter of fact, any extension the SM can be parametrized at low energy by
the effective Lagrangian

L = LSM +
∑

d>4

∑

i
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Automation of one-loop for SMEFT
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108 ev/100fb-1
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ! (ϕ†ϕ)!(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)⋆ (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

QW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσµνer)τ IϕW I
µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

No QCD particle
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µν Q(1)

ϕl (ϕ†i
↔

Dµ ϕ)(l̄pγµlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσµνer)ϕBµν Q(3)
ϕl (ϕ†i

↔

D I
µ ϕ)(l̄pτ

Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσµνTAur)ϕ̃GA
µν Qϕe (ϕ†i

↔

Dµ ϕ)(ēpγµer)

Q
ϕW̃

ϕ†ϕ W̃ I
µνW

Iµν QuW (q̄pσµνur)τ I ϕ̃W I
µν Q(1)

ϕq (ϕ†i
↔

Dµ ϕ)(q̄pγµqr)

QϕB ϕ†ϕBµνBµν QuB (q̄pσµνur)ϕ̃Bµν Q(3)
ϕq (ϕ†i

↔

D I
µ ϕ)(q̄pτ

Iγµqr)

QϕB̃ ϕ†ϕ B̃µνBµν QdG (q̄pσµνTAdr)ϕGA
µν Qϕu (ϕ†i

↔

Dµ ϕ)(ūpγµur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσµνdr)τ IϕW I
µν Qϕd (ϕ†i

↔

Dµ ϕ)(d̄pγµdr)

QϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν QdB (q̄pσµνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγµdr)

Table 2: Dimension-six operators other than the four-fermion ones.

3 The complete set of dimension-five and -six operators

This Section is devoted to presenting our final results (derived in Secs. 5, 6 and 7) for the basis

of independent operators Q(5)
n and Q(6)

n . Their independence means that no linear combination
of them and their Hermitian conjugates is EOM-vanishing up to total derivatives.

Imposing the SM gauge symmetry constraints on Q(5)
n leaves out just a single operator [20],

up to Hermitian conjugation and flavour assignments. It reads

Qνν = εjkεmnϕ
jϕm(lkp)

TClnr ≡ (ϕ̃†lp)
TC(ϕ̃†lr), (3.1)

where C is the charge conjugation matrix.2 Qνν violates the lepton number L. After the
electroweak symmetry breaking, it generates neutrino masses and mixings. Neither L(4)

SM nor
the dimension-six terms can do the job. Thus, consistency of the SM (as defined by Eq. (1.1)
and Tab. 1) with observations crucially depends on this dimension-five term.

All the independent dimension-six operators that are allowed by the SM gauge symmetries
are listed in Tabs. 2 and 3. Their names in the left column of each block should be supplemented
with generation indices of the fermion fields whenever necessary, e.g., Q(1)

lq → Q(1)prst
lq . Dirac

indices are always contracted within the brackets, and not displayed. The same is true for the

2 In the Dirac representation C = iγ2γ0, with Bjorken and Drell [21] phase conventions.

3

In the loop: 
same as SM 

+axial anomaly

More momenta: higher rank 
of the integral numerator

Additional gamma
and colour algebra
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγµlt) Qee (ēpγµer)(ēsγµet) Qle (l̄pγµlr)(ēsγµet)

Q(1)
qq (q̄pγµqr)(q̄sγµqt) Quu (ūpγµur)(ūsγµut) Qlu (l̄pγµlr)(ūsγµut)

Q(3)
qq (q̄pγµτ Iqr)(q̄sγµτ Iqt) Qdd (d̄pγµdr)(d̄sγµdt) Qld (l̄pγµlr)(d̄sγµdt)

Q(1)
lq (l̄pγµlr)(q̄sγµqt) Qeu (ēpγµer)(ūsγµut) Qqe (q̄pγµqr)(ēsγµet)

Q(3)
lq (l̄pγµτ I lr)(q̄sγµτ Iqt) Qed (ēpγµer)(d̄sγµdt) Q(1)

qu (q̄pγµqr)(ūsγµut)

Q(1)
ud (ūpγµur)(d̄sγµdt) Q(8)

qu (q̄pγµTAqr)(ūsγµTAut)

Q(8)
ud (ūpγµTAur)(d̄sγµTAdt) Q(1)

qd (q̄pγµqr)(d̄sγµdt)

Q(8)
qd (q̄pγµTAqr)(d̄sγµTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]

Q(1)
quqd (q̄jpur)εjk(q̄ksdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt) Q(1)

qqq εαβγεjkεmn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(1)
lequ (l̄jper)εjk(q̄

k
sut) Q(3)

qqq εαβγ(τ Iε)jk(τ Iε)mn

[
(qαjp )TCqβkr

] [
(qγms )TClnt

]

Q(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut) Qduu εαβγ
[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Table 3: Four-fermion operators.

isospin and colour indices in the upper part of Tab. 3. In the lower-left block of that table,
colour indices are still contracted within the brackets, while the isospin ones are made explicit.
Colour indices are displayed only for operators that violate the baryon number B (lower-right
block of Tab. 3). All the other operators in Tabs. 2 and 3 conserve both B and L.

The bosonic operators (classes X3, X2ϕ2, ϕ6 and ϕ4D2) are all Hermitian. Those containing
X̃µν are CP-odd, while the remaining ones are CP-even. For the operators containing fermions,
Hermitian conjugation is equivalent to transposition of generation indices in each of the fermionic
currents in classes (L̄L)(L̄L), (R̄R)(R̄R), (L̄L)(R̄R), and ψ2ϕ2D2 (except for Qϕud). For the
remaining operators with fermions, Hermitian conjugates are not listed explicitly.

If CP is defined in the weak eigenstate basis then Q−
(+)

Q† are CP-odd (-even) for all the
fermionic operators. It follows that CP-violation by any of those operators requires a non-
vanishing imaginary part of the corresponding Wilson coefficient. However, one should remem-
ber that such a CP is not equivalent to the usual (“experimental”) one defined in the mass
eigenstate basis, just because the two bases are related by a complex unitary transformation.

Counting the entries in Tabs. 2 and 3, we find 15 bosonic operators, 19 single-fermionic-
current ones, and 25 B-conserving four-fermion ones. In total, there are 15+19+25=59 inde-
pendent dimension-six operators, so long as B-conservation is imposed.

4

Same as SM but 
axial anomaly!
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Evanescent operators:

Operator O(8)
ut is defined as

O
(8)
ut =

�
ū�

µ
T

A
u
� �

t̄�µT
A
t
�

(1)
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6
(TA)ij(TA)kl +

2

9
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(TATB)ij(TATB)kl = �1

3
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2

9
�ij�kl (3)

and an evanescent operator defined as (see for example, [1])
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A
t
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
corresponds to the choice of [1]. It follows that

�
µ
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PR ⌦ �µPR (5)

�
µ
�
⌫
�
⇢
PR ⌦ �⇢�⌫�µPR = �E + [4� (12� 4a)"]�µ

PR ⌦ �µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:
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compute eq. (8) in 4-dimension (as in MadLoop), we would get:

M1 � C

⇤2
g
2
s

✓
7

6
T ⌦ T

◆✓
2

Z 1

0
dx

Z 1�x

0
dy

◆

i

(4⇡)2
(4⇡)"�(1 + ")

1

4

✓
1

"
� log�

◆
g
↵̄�̄ [�⌫̄

�↵̄�
µ̄
PR ⌦ �µ̄��̄�⌫̄PR]

=
iC

⇤2

g
2
s

(4⇡)2
(4⇡)"�(1 + ")

✓
7

6
T ⌦ T

◆

✓
1

"
�
✓
2

Z 1

0
dx

Z 1�x

0
dylog�

◆◆
[�µ̄

PR ⌦ �µ̄PR] (12)

Comparing this with eq. (10), the R2 can be identified:

R21 =
iC

⇤2

g
2
s

(4⇡)2
(4⇡)"�(1 + ")

✓
7

6
T ⌦ T

◆
(�3 + a) [�µ

PR ⌦ �µPR] (13)

This R2 originates from the way in which E is defined.
The diagram on the right, M2, gives the same contribution (for the divergent

part), so in the end both UV and R2 are doubled:

UV1+2 =
iC

⇤2

g
2
s

(4⇡)2

✓
�7

3

◆
(4⇡)"�(1 + ")

1

"
[�µ
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A ⌦ �µPRT

A]
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g
2
s

(4⇡)2

✓
�7

3

◆
(4⇡)"�(1 + ")(3� a)[�µ
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A ⌦ �µPRT

A] (14)

2 Diagrams 3,4

Figure 2:
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ū�

µ
PRT

A
u
� �

t̄�µPRT
A
t
�

(4)

where the a is just to keep track of the evanescent basis dependence; a = 1
corresponds to the choice of [1]. It follows that

�
µ
�
⌫
�
⇢
PR ⌦ �µ�⌫�⇢PR = E + (16� 4a")�µ

PR ⌦ �µPR (5)

�
µ
�
⌫
�
⇢
PR ⌦ �⇢�⌫�µPR = �E + [4� (12� 4a)"]�µ

PR ⌦ �µPR (6)

1 Diagrams 1,2

First consider diagrams:

Figure 1:

Left diagram:

M1 =
C

⇤2
g
2
s


7

6
T ⌦ T +

2

9
� ⌦ �

�

Z
d
D
q

(2⇡)D
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Extra R2 (gauge invariant)
Change the UV matching
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gAγμγ5
SM:  
gu

A = gc
A = gt

A = − gd
A = − gs

A = − gb
A

SMEFT:  
gu

A ≠ gc
A ≠ gt

A ≠ − gd
A ≠ − gs

A ≠ − gb
A

gAγμγ5 =

gApγ5

+ modification of quarks-gluon vertex (chromo)

∝ ϵp1p2μ1μ2
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LO:

NLO:

• 4-tops to top pair prod.,… 
• Fit & correlations
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a proof of principle that fully automatic computation of
cross sections at NLO in QCD is possible in the context
of the full dimension-six Lagrangian of the SM. Higher
order computations in effective field theories, which are
renormalizable only order by order in 1/Λ, Λ being the
scale of new physics, present novel technical challenges.
In general, UV divergences generated by one operator
at a certain order of 1/Λ have to be absorbed also by
other effective operators. As a result, the full set of
relevant operators together with their operator mixing
effects need to be considered simultaneously, and appro-
priate UV counterterms have to be implemented in the
calculation. Our method and its implementation are fully
general and can cover arbitrary NLO calculations in the
complete dimension-six Lagrangian of the SM.

II. FRAMEWORK

The FCN couplings of the top quark can be
parametrized using either fully gauge-symmetric
dimension-six operators [19, 20] or dimension-four and
dimension-five operators in the electroweak broken
phase [6, 21]. The latter approach has some intrinsic
limitations [22], and we will use the dimension-six op-
erators throughout the paper. The effective Lagrangian
can be written as

LEFT = LSM +
∑

i

Ci

Λ2
Oi +H.c. (1)

In this work we consider qtB couplings at the dimension-
six level. The relevant operators must involve one top
quark and one light quark. They are

O(3,i+3)
ϕq = i

(

ϕ†←→D I
µϕ

)

(q̄iγ
µτIQ)

O(1,i+3)
ϕq = i

(

ϕ†←→D µϕ
)

(q̄iγ
µQ)

O(i+3)
ϕu = i

(

ϕ†←→D µϕ
)

(ūiγ
µt)

O(i3)
uB = gY (q̄iσ

µνt)ϕ̃Bµν , O(i3)
uW = gW (q̄iσ

µντIt)ϕ̃W I
µν

O(i3)
uG = gs(q̄iσ

µνTAt)ϕ̃GA
µν , O(i3)

uϕ = (ϕ†ϕ)(q̄it)ϕ̃ ,

where the operator notation is consistent with Ref. [23],
with additional flavor indices. On the right hand side,
the subscript i = 1, 2 represents the generation of the
light quark fields. ui and qi are single and doublet quark
fields of the first two generations, respectively, while t
and Q are of the third generation. ϕ is the Higgs dou-
blet. A diagonal CKM matrix is assumed. The group
generators are normalized such that Tr

(

TATB
)

= δAB/2

and Tr
(

τIτJ
)

= 2δIJ , and ϕ†←→D µϕ ≡ ϕ†Dµϕ−Dµϕ†ϕ,

ϕ†←→D I
µϕ ≡ ϕ†τIDµϕ − Dµϕ†τIϕ. For operators with

(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and

2
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(i3) superscript, a similar set of operators with (3i) fla-
vor structure can be obtained by interchanging (i3) ↔
(3i), t ↔ ui and Q ↔ qi. The first three operators

give rise to V/A couplings of Z to a flavor-changing cur-
rent, which were not considered in previous calculations

of Ref. [10]. The O(i3,3i)
uB , O(i3,3i)

uW and O(i3,3i)
uG operators

correspond to weak- and color-dipole couplings. In par-

ticular, O(i3,3i)
uG could induce the production pp → th,

and it was not included in [11]. The last operator gives
rise to flavor-changing Yukawa couplings. This operator

is actually implemented as O(i3)
uϕ = (ϕ†ϕ− v2/2)(q̄it)ϕ̃ to

avoid any need for a field redefinition in order to remove
the tree-level q − t mixing. It is interesting to note that
all qtB interactions receive contributions from operators
that involve the Higgs field, therefore they are also rel-
evant for constraining new physics in the Higgs sector.
Finally, we stress that four-fermion operators should also
be taken into account for a complete phenomenological
study of FCN interactions, see Ref. [? ]. Their implemen-
tation in the current framework is possible and is left for
future work.
In calculations at NLO in QCD, a renormalization

scheme needs to be specified, in particular for the
dimension-six operators. We adopt the MS scheme in
general, except for masses and wave functions that are
renormalized on shell. Specifically, this requires the in-
troduction of off-diagonal wave function counterterms to
cancel the u − t or c − t two-point functions generated

by O(i3,3i)
uG . We work in the five-flavor scheme where the

b-quark mass is neglected, and we subtract the massless
modes according to the MS scheme and the top at zero
momentum for the strong coupling constant renormaliza-
tion [24]. At order αS these operators will not mix with
the SM terms, but mix among themselves. The running
of these coefficients is given by the renormalization group
equations

dCi(µ)

dlnµ
= γijCj(µ) , (2)

where γij for C
(13)
uG , C(13)

uW , C(13)
uB and C(13)

uϕ can be written
as a matrix [17, 25]:

γ =
αS

π

⎛

⎜

⎜

⎝

1
3 0 0 0
2
3

2
3 0 0

10
9 0 2

3 0
4y2t 0 0 −2

⎞

⎟

⎟

⎠

, (3)

where yt is the top-quark Yukawa coupling. The same γij
matrix applies for the operators with either (i3) or (3i)

superscript. The operators O(3,i+3)
ϕq , O(1,i+3)

ϕq and O(i+3)
ϕu

do not have any anomalous dimension due to current
conservation and do not mix with other operators.

III. IMPLEMENTATION AND CHECKS

The operators are implemented in the UFO format
[26], using the FeynRules package [12]. The evaluation
of the loop corrections in MadGraph5 aMC@NLO re-
quires two additional elements, the UV counterterms and
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• NLO for tree-level processes/LO for loop-induced 

• dimension-4 BSM at first 

• MadGraph5_aMC@NLO: one-loop computation + PS 

• FeynRules: Model tree-level vertices and UV/R2 
counterterms 

• UV+basis reduction, check R. Alonso, E. E. Jenkins, 
A. V. Manohar, M. Trott, JHEP 1404 (2014) 159

Automated BSM at one-loop

16
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• SM counterterms for EW 

• Anomalous gluon interaction: 

• V. Hirschi, F. Maltoni, I. Tsinikos, E. Vryonidou, 
JHEP 07 (2018) 093 

• Higgs gluon interaction: like SM heavy top limit for 
H prod but for HH (A. Buchalla et al, JHEP 09 
(2018) 057), …

0F

17
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• Non-trivial: Chromomagnetic 

•  like SM 

•  like SM but 

• axial anomaly : gg > Z > tt, gg>gz,uu>gz,… few 
fb/TeV4 but larger when not properly taken into 
account

ψ2φ3

ψ2φ2D

2F

18

CD et al. (Phys.Rev.D 91 (2015) 034024) (FCNC)
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4F
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Full UFO for top 
SMEFT being tested
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• LHC is entering the precision era 

• EFT is multi-channel/observable (even more at one-
loop) 

• Global fit with a large number of parameters/
multiple data 

• Interplay between PDF and EFT 

• Interplay between EFT and SM parameters

Outlook
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Outlook
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CHECKING THE 
SMEFT@NLO


