

Institut de recherche en mathématique et physique Centre de Cosmologie, Physique des Particules et Phénoménologie

E,

Plan

- Introduction
- Challenges
- Status
- Outlook

In collaboration with G. Durieux, F. Maltoni, K. Mimasu, A. Vasquez, E. Vryonidou, C. Zhang

Introduction

EFT and NLO

Precision era at the LHC

Precision era at the LHC

Challenges

EFT at NLO (QCD)

B. Grzadkowski et al, JHEP 1010 (2010) 085

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$-\frac{(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)}{(\bar{l}_{p}e_{r}\varphi)}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q_W	$\varepsilon^{IJK}W^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\widetilde{W}}$	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				No QCD particle	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(\overline{l}_p \sigma^{\mu u} e_r) \varphi B_{\mu u}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(l_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\varphi W}$	$arphi^{\dagger} arphi W^{I}_{\mu u} W^{I}^{\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger} i D_{\mu} \varphi) (\bar{e}_{p} \gamma^{\mu} e_{r})$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$\left(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})\right)$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\varphi B}$	$arphi^\dagger arphi B_{\mu u} B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$\left[(\varphi^{\dagger} i \overleftrightarrow{D}^{I}_{\mu} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right]$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{\varphi \widetilde{B}}$	$arphi^\dagger arphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi \widetilde{W}B} \left[\begin{array}{c} \varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu\nu} B^{\mu\nu} \\ \psi W^{I}_{\mu\nu} B^{\mu\nu} \end{array} \right] \left[\begin{array}{c} Q_{dB} \left[\begin{array}{c} (\bar{q}_{p} \sigma^{\mu\nu} d_{r}) \varphi B_{\mu\nu} \\ \psi W^{I}_{\mu\nu} W^{I}_{\mu\nu} W^{I}_{\mu\nu} W^{I}_{\mu\nu} W^{I}_{\mu\nu} W^{I}_{\mu\nu} \right] \right] \left[\begin{array}{c} Q_{dB} \left[\begin{array}{c} (\bar{q}_{p} \sigma^{\mu\nu} d_{r}) \varphi B_{\mu\nu} \\ \psi W^{I}_{\mu\nu} W^{I}_{\mu\nu}$	$Q_{\varphi WB}$	$\varphi^{\dagger} f^{I} \varphi W^{I}_{\mu u} B^{\mu u}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
	$Q_{\varphi \widetilde{W}B}$	$arphi^\dagger au^I arphi \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

EFT at NLO

 $f^{ABC} G^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$ $\varphi^{\dagger} \varphi G^{A}_{\mu\nu} G^{A\mu\nu}$

More momenta: higher rank of the integral numerator

Additional gamma and colour algebra

 $(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$

EFT at NLO

$(\bar{L}L)(\bar{L}L)$			$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$			
Q_{ll}	$\frac{(\bar{l}_p\gamma_\mu l_r)(\bar{l}_s\gamma^\mu l_t)}{(\bar{l}_s\gamma^\mu l_t)}$	Q_{ee}	$- (\bar{c}_p \gamma_\mu c_r) (\bar{c}_s \gamma^\mu c_t)$	Q_{le}	$-\frac{(\bar{l}_p\gamma_\mu l_r)(\bar{e}_s\gamma^\mu e_t)}{(\bar{e}_s\gamma^\mu e_t)}$		
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
Same as SI*I but		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$		
axial anomaly!				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating					
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$				
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^I\varepsilon)_{jk}(\tau^I\varepsilon)_{mn}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma} \left[(d_p^{\alpha})^T C u_r^{\beta} \right] \left[(u_s^{\gamma})^T C e_t \right]$				

EFT at NLO

Evanescent operators:

 $O_{ut}^{(8)} = \left(\bar{u}\gamma^{\mu}T^{A}u\right)\left(\bar{t}\gamma_{\mu}T^{A}t\right)$

 $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{R}\otimes\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}P_{R} = E + (16 - 4a\varepsilon)\gamma^{\mu}P_{R}\otimes\gamma_{\mu}P_{R}$ $\gamma^{\mu}\gamma^{\nu}\gamma^{\rho}P_{R}\otimes\gamma_{\rho}\gamma_{\nu}\gamma_{\mu}P_{R} = -E + [4 - (12 - 4a)\varepsilon]\gamma^{\mu}P_{R}\otimes\gamma_{\mu}P_{R}$

Extra R2 (gauge invariant) Change the UV matching

Axial anomaly

SM:

$$g_A^u = g_A^c = g_A^t = -g_A^d = -g_A^s = -g_A^b$$

SMEFT:
 $g_A^u \neq g_A^c \neq g_A^t \neq -g_A^d \neq -g_A^s \neq -g_A^b$

+ modification of quarks-gluon vertex (chromo)

More operators/process

- 4-tops to top pair prod.,...
- Fit & correlations

Running and mixing

$$C_{uG}^{(13)}, C_{uW}^{(13)}, C_{uB}^{(13)} \text{ and } C_{u\varphi}^{(13)}$$

$$\gamma = \frac{\alpha_S}{\pi} \begin{pmatrix} \frac{1}{3} & 0 & 0 & 0\\ \frac{2}{3} & \frac{2}{3} & 0 & 0\\ \frac{10}{9} & 0 & \frac{2}{3} & 0\\ 4y_t^2 & 0 & 0 & -2 \end{pmatrix}$$

R. Alonso, E. Jenkins, A. Manohar, M. Trott, *JHEP* 10 (2013) 087, *JHEP* 01 (2014) 035, *JHEP* 04 (2014) 159

Automated BSM at one-loop

- NLO for tree-level processes/LO for loop-induced
- dimension-4 BSM at first
- MadGraph5_aMC@NLO: one-loop computation + PS

- FeynRules: Model tree-level vertices and UV/R2 counterterms
 - UV+basis reduction, check R. Alonso, E. E. Jenkins,
 A. V. Manohar, M. Trott, JHEP 1404 (2014) 159

- SM counterterms for EW
- Anomalous gluon interaction:
 - V. Hirschi, F. Maltoni, I. Tsinikos, E. Vryonidou, JHEP 07 (2018) 093
- Higgs gluon interaction: like SM heavy top limit for H prod but for HH (A. Buchalla et al, *JHEP* 09 (2018) 057), ...

CD et al. (Phys.Rev.D 91 (2015) 034024) (FCNC)

- Non-trivial: Chromomagnetic
- $\psi^2 \varphi^3$ like SM
- $\psi^2 \varphi^2 D$ like SM but
 - axial anomaly : gg > Z > tt, gg>gz,uu>gz,... few fb/TeV⁴ but larger when not properly taken into account

4F

Outlook

- LHC is entering the precision era
- EFT is multi-channel/observable (even more at oneloop)
- Global fit with a large number of parameters/ multiple data
- Interplay between PDF and EFT
- Interplay between EFT and SM parameters

Outlook

